/** *Submitted for verification at hecoinfo.com on 2021-09-25 */ // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return payable(msg.sender); } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } /** * @dev Interface of the BEP20 standard as defined in the EIP. */ interface IBEP20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address public _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } contract CoinToken is Context, IBEP20, Ownable { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _rOwned; mapping (address => uint256) private _tOwned; mapping (address => mapping (address => uint256)) private _allowances; mapping (address => bool) private _isExcluded; mapping (address => bool) private _isCharity; address[] private _excluded; string private _NAME; string private _SYMBOL; uint256 private _DECIMALS; address public FeeAddress; uint256 private _MAX = ~uint256(0); uint256 private _DECIMALFACTOR; uint256 private _GRANULARITY = 100; uint256 private _tTotal; uint256 private _rTotal; uint256 private _tFeeTotal; uint256 private _tBurnTotal; uint256 private _tCharityTotal; uint256 public _TAX_FEE; uint256 public _BURN_FEE; uint256 public _CHARITY_FEE; // Track original fees to bypass fees for charity account uint256 private ORIG_TAX_FEE; uint256 private ORIG_BURN_FEE; uint256 private ORIG_CHARITY_FEE; constructor (string memory _name, string memory _symbol, uint256 _decimals, uint256 _supply, uint256 _txFee,uint256 _burnFee,uint256 _charityFee,address _FeeAddress,address tokenOwner) { _NAME = _name; _SYMBOL = _symbol; _DECIMALS = _decimals; _DECIMALFACTOR = 10 ** uint256(_DECIMALS); _tTotal =_supply * _DECIMALFACTOR; _rTotal = (_MAX - (_MAX % _tTotal)); _TAX_FEE = _txFee* 100; _BURN_FEE = _burnFee * 100; _CHARITY_FEE = _charityFee* 100; ORIG_TAX_FEE = _TAX_FEE; ORIG_BURN_FEE = _BURN_FEE; ORIG_CHARITY_FEE = _CHARITY_FEE; _isCharity[_FeeAddress] = true; FeeAddress = _FeeAddress; _owner = tokenOwner; _rOwned[tokenOwner] = _rTotal; emit Transfer(address(0),tokenOwner, _tTotal); } function name() public view returns (string memory) { return _NAME; } function symbol() public view returns (string memory) { return _SYMBOL; } function decimals() public view returns (uint256) { return _DECIMALS; } function totalSupply() public view override returns (uint256) { return _tTotal; } function balanceOf(address account) public view override returns (uint256) { if (_isExcluded[account]) return _tOwned[account]; return tokenFromReflection(_rOwned[account]); } function transfer(address recipient, uint256 amount) public override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view override returns (uint256) { return _allowances[owner][spender]; } function approve(address spender, uint256 amount) public override returns (bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "TOKEN20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "TOKEN20: decreased allowance below zero")); return true; } function isExcluded(address account) public view returns (bool) { return _isExcluded[account]; } function isCharity(address account) public view returns (bool) { return _isCharity[account]; } function totalFees() public view returns (uint256) { return _tFeeTotal; } function totalBurn() public view returns (uint256) { return _tBurnTotal; } function totalCharity() public view returns (uint256) { return _tCharityTotal; } function deliver(uint256 tAmount) public { address sender = _msgSender(); require(!_isExcluded[sender], "Excluded addresses cannot call this function"); (uint256 rAmount,,,,,,) = _getValues(tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _rTotal = _rTotal.sub(rAmount); _tFeeTotal = _tFeeTotal.add(tAmount); } function reflectionFromToken(uint256 tAmount, bool deductTransferFee) public view returns(uint256) { require(tAmount <= _tTotal, "Amount must be less than supply"); if (!deductTransferFee) { (uint256 rAmount,,,,,,) = _getValues(tAmount); return rAmount; } else { (,uint256 rTransferAmount,,,,,) = _getValues(tAmount); return rTransferAmount; } } function tokenFromReflection(uint256 rAmount) public view returns(uint256) { require(rAmount <= _rTotal, "Amount must be less than total reflections"); uint256 currentRate = _getRate(); return rAmount.div(currentRate); } function excludeAccount(address account) external onlyOwner() { require(!_isExcluded[account], "Account is already excluded"); if(_rOwned[account] > 0) { _tOwned[account] = tokenFromReflection(_rOwned[account]); } _isExcluded[account] = true; _excluded.push(account); } function includeAccount(address account) external onlyOwner() { require(_isExcluded[account], "Account is already excluded"); for (uint256 i = 0; i < _excluded.length; i++) { if (_excluded[i] == account) { _excluded[i] = _excluded[_excluded.length - 1]; _tOwned[account] = 0; _isExcluded[account] = false; _excluded.pop(); break; } } } function setAsCharityAccount(address account) external onlyOwner() { require(!_isCharity[account], "Account is already charity account"); _isCharity[account] = true; FeeAddress = account; } function burn(uint256 _value) public{ _burn(msg.sender, _value); } function updateFee(uint256 _txFee,uint256 _burnFee,uint256 _charityFee) onlyOwner() public{ _TAX_FEE = _txFee* 100; _BURN_FEE = _burnFee * 100; _CHARITY_FEE = _charityFee* 100; ORIG_TAX_FEE = _TAX_FEE; ORIG_BURN_FEE = _BURN_FEE; ORIG_CHARITY_FEE = _CHARITY_FEE; } function _burn(address _who, uint256 _value) internal { require(_value <= _rOwned[_who]); _rOwned[_who] = _rOwned[_who].sub(_value); _tTotal = _tTotal.sub(_value); emit Transfer(_who, address(0), _value); } function mint(address account, uint256 amount) onlyOwner() public { _tTotal = _tTotal.add(amount); _rOwned[account] = _rOwned[account].add(amount); emit Transfer(address(0), account, amount); } function _approve(address owner, address spender, uint256 amount) private { require(owner != address(0), "TOKEN20: approve from the zero address"); require(spender != address(0), "TOKEN20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _transfer(address sender, address recipient, uint256 amount) private { require(sender != address(0), "TOKEN20: transfer from the zero address"); require(recipient != address(0), "TOKEN20: transfer to the zero address"); require(amount > 0, "Transfer amount must be greater than zero"); // Remove fees for transfers to and from charity account or to excluded account bool takeFee = true; if (_isCharity[sender] || _isCharity[recipient] || _isExcluded[recipient]) { takeFee = false; } if (!takeFee) removeAllFee(); if (_isExcluded[sender] && !_isExcluded[recipient]) { _transferFromExcluded(sender, recipient, amount); } else if (!_isExcluded[sender] && _isExcluded[recipient]) { _transferToExcluded(sender, recipient, amount); } else if (!_isExcluded[sender] && !_isExcluded[recipient]) { _transferStandard(sender, recipient, amount); } else if (_isExcluded[sender] && _isExcluded[recipient]) { _transferBothExcluded(sender, recipient, amount); } else { _transferStandard(sender, recipient, amount); } if (!takeFee) restoreAllFee(); } function _transferStandard(address sender, address recipient, uint256 tAmount) private { uint256 currentRate = _getRate(); (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tBurn, uint256 tCharity) = _getValues(tAmount); uint256 rBurn = tBurn.mul(currentRate); uint256 rCharity = tCharity.mul(currentRate); _standardTransferContent(sender, recipient, rAmount, rTransferAmount); _sendToCharity(tCharity, sender); _reflectFee(rFee, rBurn, rCharity, tFee, tBurn, tCharity); emit Transfer(sender, recipient, tTransferAmount); } function _standardTransferContent(address sender, address recipient, uint256 rAmount, uint256 rTransferAmount) private { _rOwned[sender] = _rOwned[sender].sub(rAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); } function _transferToExcluded(address sender, address recipient, uint256 tAmount) private { uint256 currentRate = _getRate(); (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tBurn, uint256 tCharity) = _getValues(tAmount); uint256 rBurn = tBurn.mul(currentRate); uint256 rCharity = tCharity.mul(currentRate); _excludedFromTransferContent(sender, recipient, tTransferAmount, rAmount, rTransferAmount); _sendToCharity(tCharity, sender); _reflectFee(rFee, rBurn, rCharity, tFee, tBurn, tCharity); emit Transfer(sender, recipient, tTransferAmount); } function _excludedFromTransferContent(address sender, address recipient, uint256 tTransferAmount, uint256 rAmount, uint256 rTransferAmount) private { _rOwned[sender] = _rOwned[sender].sub(rAmount); _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); } function _transferFromExcluded(address sender, address recipient, uint256 tAmount) private { uint256 currentRate = _getRate(); (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tBurn, uint256 tCharity) = _getValues(tAmount); uint256 rBurn = tBurn.mul(currentRate); uint256 rCharity = tCharity.mul(currentRate); _excludedToTransferContent(sender, recipient, tAmount, rAmount, rTransferAmount); _sendToCharity(tCharity, sender); _reflectFee(rFee, rBurn, rCharity, tFee, tBurn, tCharity); emit Transfer(sender, recipient, tTransferAmount); } function _excludedToTransferContent(address sender, address recipient, uint256 tAmount, uint256 rAmount, uint256 rTransferAmount) private { _tOwned[sender] = _tOwned[sender].sub(tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); } function _transferBothExcluded(address sender, address recipient, uint256 tAmount) private { uint256 currentRate = _getRate(); (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tBurn, uint256 tCharity) = _getValues(tAmount); uint256 rBurn = tBurn.mul(currentRate); uint256 rCharity = tCharity.mul(currentRate); _bothTransferContent(sender, recipient, tAmount, rAmount, tTransferAmount, rTransferAmount); _sendToCharity(tCharity, sender); _reflectFee(rFee, rBurn, rCharity, tFee, tBurn, tCharity); emit Transfer(sender, recipient, tTransferAmount); } function _bothTransferContent(address sender, address recipient, uint256 tAmount, uint256 rAmount, uint256 tTransferAmount, uint256 rTransferAmount) private { _tOwned[sender] = _tOwned[sender].sub(tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); } function _reflectFee(uint256 rFee, uint256 rBurn, uint256 rCharity, uint256 tFee, uint256 tBurn, uint256 tCharity) private { _rTotal = _rTotal.sub(rFee).sub(rBurn).sub(rCharity); _tFeeTotal = _tFeeTotal.add(tFee); _tBurnTotal = _tBurnTotal.add(tBurn); _tCharityTotal = _tCharityTotal.add(tCharity); _tTotal = _tTotal.sub(tBurn); emit Transfer(address(this), address(0), tBurn); } function _getValues(uint256 tAmount) private view returns (uint256, uint256, uint256, uint256, uint256, uint256, uint256) { (uint256 tFee, uint256 tBurn, uint256 tCharity) = _getTBasics(tAmount, _TAX_FEE, _BURN_FEE, _CHARITY_FEE); uint256 tTransferAmount = getTTransferAmount(tAmount, tFee, tBurn, tCharity); uint256 currentRate = _getRate(); (uint256 rAmount, uint256 rFee) = _getRBasics(tAmount, tFee, currentRate); uint256 rTransferAmount = _getRTransferAmount(rAmount, rFee, tBurn, tCharity, currentRate); return (rAmount, rTransferAmount, rFee, tTransferAmount, tFee, tBurn, tCharity); } function _getTBasics(uint256 tAmount, uint256 taxFee, uint256 burnFee, uint256 charityFee) private view returns (uint256, uint256, uint256) { uint256 tFee = ((tAmount.mul(taxFee)).div(_GRANULARITY)).div(100); uint256 tBurn = ((tAmount.mul(burnFee)).div(_GRANULARITY)).div(100); uint256 tCharity = ((tAmount.mul(charityFee)).div(_GRANULARITY)).div(100); return (tFee, tBurn, tCharity); } function getTTransferAmount(uint256 tAmount, uint256 tFee, uint256 tBurn, uint256 tCharity) private pure returns (uint256) { return tAmount.sub(tFee).sub(tBurn).sub(tCharity); } function _getRBasics(uint256 tAmount, uint256 tFee, uint256 currentRate) private pure returns (uint256, uint256) { uint256 rAmount = tAmount.mul(currentRate); uint256 rFee = tFee.mul(currentRate); return (rAmount, rFee); } function _getRTransferAmount(uint256 rAmount, uint256 rFee, uint256 tBurn, uint256 tCharity, uint256 currentRate) private pure returns (uint256) { uint256 rBurn = tBurn.mul(currentRate); uint256 rCharity = tCharity.mul(currentRate); uint256 rTransferAmount = rAmount.sub(rFee).sub(rBurn).sub(rCharity); return rTransferAmount; } function _getRate() private view returns(uint256) { (uint256 rSupply, uint256 tSupply) = _getCurrentSupply(); return rSupply.div(tSupply); } function _getCurrentSupply() private view returns(uint256, uint256) { uint256 rSupply = _rTotal; uint256 tSupply = _tTotal; for (uint256 i = 0; i < _excluded.length; i++) { if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return (_rTotal, _tTotal); rSupply = rSupply.sub(_rOwned[_excluded[i]]); tSupply = tSupply.sub(_tOwned[_excluded[i]]); } if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal); return (rSupply, tSupply); } function _sendToCharity(uint256 tCharity, address sender) private { uint256 currentRate = _getRate(); uint256 rCharity = tCharity.mul(currentRate); _rOwned[FeeAddress] = _rOwned[FeeAddress].add(rCharity); _tOwned[FeeAddress] = _tOwned[FeeAddress].add(tCharity); emit Transfer(sender, FeeAddress, tCharity); } function removeAllFee() private { if(_TAX_FEE == 0 && _BURN_FEE == 0 && _CHARITY_FEE == 0) return; ORIG_TAX_FEE = _TAX_FEE; ORIG_BURN_FEE = _BURN_FEE; ORIG_CHARITY_FEE = _CHARITY_FEE; _TAX_FEE = 0; _BURN_FEE = 0; _CHARITY_FEE = 0; } function restoreAllFee() private { _TAX_FEE = ORIG_TAX_FEE; _BURN_FEE = ORIG_BURN_FEE; _CHARITY_FEE = ORIG_CHARITY_FEE; } function _getTaxFee() private view returns(uint256) { return _TAX_FEE; } }