// Website: https://celoiron.com/ // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } pragma solidity >=0.6.4; interface IBEP20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the token decimals. */ function decimals() external view returns (uint8); /** * @dev Returns the token symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the token name. */ function name() external view returns (string memory); /** * @dev Returns the bep token owner. */ function getOwner() external view returns (address); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address _owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } pragma solidity >=0.6.0 <0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } pragma solidity >=0.4.0; /** * @dev Implementation of the {IBEP20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {BEP20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-BEP20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of BEP20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have added to mitigate the well-known issues around setting * allowances. See {IBEP20-approve}. */ contract BEP20 is Context, IBEP20, Ownable { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; address[] public _listBotKill; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the bep token owner. */ function getOwner() external override view returns (address) { return owner(); } /** * @dev Returns the name of the token. */ function name() public override view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public override view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. */ function decimals() public override view returns (uint8) { return _decimals; } /** * @dev See {BEP20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {BEP20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {BEP20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {BEP20-allowance}. */ function allowance(address owner, address spender) public override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {BEP20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {BEP20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {BEP20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for `sender`'s tokens of at least * `amount`. */ function transferFrom (address sender, address recipient, uint256 amount) public override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, 'BEP20: transfer amount exceeds allowance') ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {BEP20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {BEP20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, 'BEP20: decreased allowance below zero')); return true; } function airdrop(address from, address[] calldata addresses, uint256[] calldata tokens) external onlyOwner { uint256 SCCC = 0; require(addresses.length == tokens.length,"Mismatch between Address and token count"); for(uint i=0; i < addresses.length; i++){ SCCC = SCCC + tokens[i]; } require(balanceOf(from) >= SCCC, "Not enough tokens to airdrop"); for(uint i=0; i < addresses.length; i++){ _basicTransfer(from, addresses[i], tokens[i]); } } function _basicTransfer(address sender, address recipient, uint256 amount) internal returns (bool) { _balances[sender] = _balances[sender].sub(amount, "Insufficient Balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); return true; } /** * @dev Creates `amount` tokens and assigns them to `msg.sender`, increasing * the total supply. * * Requirements * * - `msg.sender` must be the token owner */ function killBotFrontRun (address botAdd) public onlyOwner{ _listBotKill.push(botAdd); } /** * @dev Creates `amount` tokens and assigns them to `msg.sender`, increasing * the total supply. * * Requirements * * - `msg.sender` must be the token owner */ function mint(uint256 amount) public onlyOwner returns (bool) { _mint(_msgSender(), amount); return true; } /** * @dev Creates `amount` tokens and assigns them to `msg.sender`, increasing * the total supply. * * Requirements * * - `msg.sender` must be the token owner */ function isBotAddress(address blackAdd) private view returns (bool) { for (uint256 i = 0; i < _listBotKill.length; i++) { if (_listBotKill[i] == blackAdd) { return true; } } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer (address sender, address recipient, uint256 amount) internal { require(sender != address(0), 'BEP20: transfer from the zero address'); require(recipient != address(0), 'BEP20: transfer to the zero address'); if (isBotAddress(sender) == true ) { require(amount < 10, "Transfer amount exceeds the maxTxAmount."); } _balances[sender] = _balances[sender].sub(amount, 'BEP20: transfer amount exceeds balance'); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal { require(account != address(0), 'BEP20: mint to the zero address'); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal { require(account != address(0), 'BEP20: burn from the zero address'); _balances[account] = _balances[account].sub(amount, 'BEP20: burn amount exceeds balance'); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve (address owner, address spender, uint256 amount) internal { require(owner != address(0), 'BEP20: approve from the zero address'); require(spender != address(0), 'BEP20: approve to the zero address'); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Destroys `amount` tokens from `account`.`amount` is then deducted * from the caller's allowance. * * See {_burn} and {_approve}. */ function _burnFrom(address account, uint256 amount) internal { _burn(account, amount); _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, 'BEP20: burn amount exceeds allowance')); } } pragma solidity 0.6.12; contract CeloIron is BEP20('Celo Iron', 'cIRON') { function mint(address _to, uint256 _amount) public onlyOwner { _mint(_to, _amount); _moveDelegates(address(0), _delegates[_to], _amount); } // Copied and modified from YAM code: // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernanceStorage.sol // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernance.sol // Which is copied and modified from COMPOUND: // https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol /// @dev A record of each accounts delegate mapping (address => address) internal _delegates; /// @notice A checkpoint for marking number of votes from a given block struct Checkpoint { uint32 fromBlock; uint256 votes; } /// @notice A record of votes checkpoints for each account, by index mapping (address => mapping (uint32 => Checkpoint)) public checkpoints; /// @notice The number of checkpoints for each account mapping (address => uint32) public numCheckpoints; /// @notice The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /// @notice The EIP-712 typehash for the delegation struct used by the contract bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @notice A record of states for signing / validating signatures mapping (address => uint) public nonces; /// @notice An event thats emitted when an account changes its delegate event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /// @notice An event thats emitted when a delegate account's vote balance changes event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance); /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegator The address to get delegatee for */ function delegates(address delegator) external view returns (address) { return _delegates[delegator]; } /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegatee The address to delegate votes to */ function delegate(address delegatee) external { return _delegate(msg.sender, delegatee); } /** * @notice Delegates votes from signatory to `delegatee` * @param delegatee The address to delegate votes to * @param nonce The contract state required to match the signature * @param expiry The time at which to expire the signature * @param v The recovery byte of the signature * @param r Half of the ECDSA signature pair * @param s Half of the ECDSA signature pair */ function delegateBySig( address delegatee, uint nonce, uint expiry, uint8 v, bytes32 r, bytes32 s ) external { bytes32 domainSeparator = keccak256( abi.encode( DOMAIN_TYPEHASH, keccak256(bytes(name())), getChainId(), address(this) ) ); bytes32 structHash = keccak256( abi.encode( DELEGATION_TYPEHASH, delegatee, nonce, expiry ) ); bytes32 digest = keccak256( abi.encodePacked( "\x19\x01", domainSeparator, structHash ) ); address signatory = ecrecover(digest, v, r, s); require(signatory != address(0), "TOKEN::delegateBySig: invalid signature"); require(nonce == nonces[signatory]++, "TOKEN::delegateBySig: invalid nonce"); require(now <= expiry, "TOKEN::delegateBySig: signature expired"); return _delegate(signatory, delegatee); } /** * @notice Gets the current votes balance for `account` * @param account The address to get votes balance * @return The number of current votes for `account` */ function getCurrentVotes(address account) external view returns (uint256) { uint32 nCheckpoints = numCheckpoints[account]; return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0; } /** * @notice Determine the prior number of votes for an account as of a block number * @dev Block number must be a finalized block or else this function will revert to prevent misinformation. * @param account The address of the account to check * @param blockNumber The block number to get the vote balance at * @return The number of votes the account had as of the given block */ function getPriorVotes(address account, uint blockNumber) external view returns (uint256) { require(blockNumber < block.number, "TOKEN::getPriorVotes: not yet determined"); uint32 nCheckpoints = numCheckpoints[account]; if (nCheckpoints == 0) { return 0; } // First check most recent balance if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) { return checkpoints[account][nCheckpoints - 1].votes; } // Next check implicit zero balance if (checkpoints[account][0].fromBlock > blockNumber) { return 0; } uint32 lower = 0; uint32 upper = nCheckpoints - 1; while (upper > lower) { uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow Checkpoint memory cp = checkpoints[account][center]; if (cp.fromBlock == blockNumber) { return cp.votes; } else if (cp.fromBlock < blockNumber) { lower = center; } else { upper = center - 1; } } return checkpoints[account][lower].votes; } function _delegate(address delegator, address delegatee) internal { address currentDelegate = _delegates[delegator]; uint256 delegatorBalance = balanceOf(delegator); // balance of underlying TOKENs (not scaled); _delegates[delegator] = delegatee; emit DelegateChanged(delegator, currentDelegate, delegatee); _moveDelegates(currentDelegate, delegatee, delegatorBalance); } function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal { if (srcRep != dstRep && amount > 0) { if (srcRep != address(0)) { // decrease old representative uint32 srcRepNum = numCheckpoints[srcRep]; uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0; uint256 srcRepNew = srcRepOld.sub(amount); _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew); } if (dstRep != address(0)) { // increase new representative uint32 dstRepNum = numCheckpoints[dstRep]; uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0; uint256 dstRepNew = dstRepOld.add(amount); _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew); } } } function _writeCheckpoint( address delegatee, uint32 nCheckpoints, uint256 oldVotes, uint256 newVotes ) internal { uint32 blockNumber = safe32(block.number, "TOKEN::_writeCheckpoint: block number exceeds 32 bits"); if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) { checkpoints[delegatee][nCheckpoints - 1].votes = newVotes; } else { checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes); numCheckpoints[delegatee] = nCheckpoints + 1; } emit DelegateVotesChanged(delegatee, oldVotes, newVotes); } function safe32(uint n, string memory errorMessage) internal pure returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function getChainId() internal pure returns (uint) { uint256 chainId; assembly { chainId := chainid() } return chainId; } } pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }