/** *Submitted for verification at BscScan.com on 2021-04-29 */ // File: @openzeppelin/contracts/utils/Context.sol // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: @openzeppelin/contracts/access/Ownable.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: @openzeppelin/contracts/math/SafeMath.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // File: @openzeppelin/contracts/token/ERC20/IERC20.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: @openzeppelin/contracts/utils/Address.sol pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: value}(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) private pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol pragma solidity >=0.6.0 <0.8.0; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // File: @openzeppelin/contracts/utils/Pausable.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() internal { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // File: contracts/interfaces/IMasterChef.sol pragma solidity 0.6.12; interface IMasterChef { function deposit(uint256 _pid, uint256 _amount) external; function withdraw(uint256 _pid, uint256 _amount) external; function enterStaking(uint256 _amount) external; function leaveStaking(uint256 _amount) external; function pendingCake(uint256 _pid, address _user) external view returns (uint256); function userInfo(uint256 _pid, address _user) external view returns (uint256, uint256); function emergencyWithdraw(uint256 _pid) external; } // File: contracts/CakeVault.sol pragma solidity 0.6.12; contract CakeVault is Ownable, Pausable { using SafeERC20 for IERC20; using SafeMath for uint256; struct UserInfo { uint256 shares; // number of shares for a user uint256 lastDepositedTime; // keeps track of deposited time for potential penalty uint256 cakeAtLastUserAction; // keeps track of cake deposited at the last user action uint256 lastUserActionTime; // keeps track of the last user action time } IERC20 public immutable token; // Cake token IERC20 public immutable receiptToken; // Syrup token IMasterChef public immutable masterchef; mapping(address => UserInfo) public userInfo; uint256 public totalShares; uint256 public lastHarvestedTime; address public admin; address public treasury; uint256 public constant MAX_PERFORMANCE_FEE = 500; // 5% uint256 public constant MAX_CALL_FEE = 100; // 1% uint256 public constant MAX_WITHDRAW_FEE = 100; // 1% uint256 public constant MAX_WITHDRAW_FEE_PERIOD = 72 hours; // 3 days uint256 public performanceFee = 200; // 2% uint256 public callFee = 25; // 0.25% uint256 public withdrawFee = 10; // 0.1% uint256 public withdrawFeePeriod = 72 hours; // 3 days event Deposit(address indexed sender, uint256 amount, uint256 shares, uint256 lastDepositedTime); event Withdraw(address indexed sender, uint256 amount, uint256 shares); event Harvest(address indexed sender, uint256 performanceFee, uint256 callFee); event Pause(); event Unpause(); /** * @notice Constructor * @param _token: Cake token contract * @param _receiptToken: Syrup token contract * @param _masterchef: MasterChef contract * @param _admin: address of the admin * @param _treasury: address of the treasury (collects fees) */ constructor( IERC20 _token, IERC20 _receiptToken, IMasterChef _masterchef, address _admin, address _treasury ) public { token = _token; receiptToken = _receiptToken; masterchef = _masterchef; admin = _admin; treasury = _treasury; // Infinite approve IERC20(_token).safeApprove(address(_masterchef), uint256(-1)); } /** * @notice Checks if the msg.sender is the admin address */ modifier onlyAdmin() { require(msg.sender == admin, "admin: wut?"); _; } /** * @notice Checks if the msg.sender is a contract or a proxy */ modifier notContract() { require(!_isContract(msg.sender), "contract not allowed"); require(msg.sender == tx.origin, "proxy contract not allowed"); _; } /** * @notice Deposits funds into the Cake Vault * @dev Only possible when contract not paused. * @param _amount: number of tokens to deposit (in CAKE) */ function deposit(uint256 _amount) external whenNotPaused notContract { require(_amount > 0, "Nothing to deposit"); uint256 pool = balanceOf(); token.safeTransferFrom(msg.sender, address(this), _amount); uint256 currentShares = 0; if (totalShares != 0) { currentShares = (_amount.mul(totalShares)).div(pool); } else { currentShares = _amount; } UserInfo storage user = userInfo[msg.sender]; user.shares = user.shares.add(currentShares); user.lastDepositedTime = block.timestamp; totalShares = totalShares.add(currentShares); user.cakeAtLastUserAction = user.shares.mul(balanceOf()).div(totalShares); user.lastUserActionTime = block.timestamp; _earn(); emit Deposit(msg.sender, _amount, currentShares, block.timestamp); } /** * @notice Withdraws all funds for a user */ function withdrawAll() external notContract { withdraw(userInfo[msg.sender].shares); } /** * @notice Reinvests CAKE tokens into MasterChef * @dev Only possible when contract not paused. */ function harvest() external notContract whenNotPaused { IMasterChef(masterchef).leaveStaking(0); uint256 bal = available(); uint256 currentPerformanceFee = bal.mul(performanceFee).div(10000); token.safeTransfer(treasury, currentPerformanceFee); uint256 currentCallFee = bal.mul(callFee).div(10000); token.safeTransfer(msg.sender, currentCallFee); _earn(); lastHarvestedTime = block.timestamp; emit Harvest(msg.sender, currentPerformanceFee, currentCallFee); } /** * @notice Sets admin address * @dev Only callable by the contract owner. */ function setAdmin(address _admin) external onlyOwner { require(_admin != address(0), "Cannot be zero address"); admin = _admin; } /** * @notice Sets treasury address * @dev Only callable by the contract owner. */ function setTreasury(address _treasury) external onlyOwner { require(_treasury != address(0), "Cannot be zero address"); treasury = _treasury; } /** * @notice Sets performance fee * @dev Only callable by the contract admin. */ function setPerformanceFee(uint256 _performanceFee) external onlyAdmin { require(_performanceFee <= MAX_PERFORMANCE_FEE, "performanceFee cannot be more than MAX_PERFORMANCE_FEE"); performanceFee = _performanceFee; } /** * @notice Sets call fee * @dev Only callable by the contract admin. */ function setCallFee(uint256 _callFee) external onlyAdmin { require(_callFee <= MAX_CALL_FEE, "callFee cannot be more than MAX_CALL_FEE"); callFee = _callFee; } /** * @notice Sets withdraw fee * @dev Only callable by the contract admin. */ function setWithdrawFee(uint256 _withdrawFee) external onlyAdmin { require(_withdrawFee <= MAX_WITHDRAW_FEE, "withdrawFee cannot be more than MAX_WITHDRAW_FEE"); withdrawFee = _withdrawFee; } /** * @notice Sets withdraw fee period * @dev Only callable by the contract admin. */ function setWithdrawFeePeriod(uint256 _withdrawFeePeriod) external onlyAdmin { require( _withdrawFeePeriod <= MAX_WITHDRAW_FEE_PERIOD, "withdrawFeePeriod cannot be more than MAX_WITHDRAW_FEE_PERIOD" ); withdrawFeePeriod = _withdrawFeePeriod; } /** * @notice Withdraws from MasterChef to Vault without caring about rewards. * @dev EMERGENCY ONLY. Only callable by the contract admin. */ function emergencyWithdraw() external onlyAdmin { IMasterChef(masterchef).emergencyWithdraw(0); } /** * @notice Withdraw unexpected tokens sent to the Cake Vault */ function inCaseTokensGetStuck(address _token) external onlyAdmin { require(_token != address(token), "Token cannot be same as deposit token"); require(_token != address(receiptToken), "Token cannot be same as receipt token"); uint256 amount = IERC20(_token).balanceOf(address(this)); IERC20(_token).safeTransfer(msg.sender, amount); } /** * @notice Triggers stopped state * @dev Only possible when contract not paused. */ function pause() external onlyAdmin whenNotPaused { _pause(); emit Pause(); } /** * @notice Returns to normal state * @dev Only possible when contract is paused. */ function unpause() external onlyAdmin whenPaused { _unpause(); emit Unpause(); } /** * @notice Calculates the expected harvest reward from third party * @return Expected reward to collect in CAKE */ function calculateHarvestCakeRewards() external view returns (uint256) { uint256 amount = IMasterChef(masterchef).pendingCake(0, address(this)); amount = amount.add(available()); uint256 currentCallFee = amount.mul(callFee).div(10000); return currentCallFee; } /** * @notice Calculates the total pending rewards that can be restaked * @return Returns total pending cake rewards */ function calculateTotalPendingCakeRewards() external view returns (uint256) { uint256 amount = IMasterChef(masterchef).pendingCake(0, address(this)); amount = amount.add(available()); return amount; } /** * @notice Calculates the price per share */ function getPricePerFullShare() external view returns (uint256) { return totalShares == 0 ? 1e18 : balanceOf().mul(1e18).div(totalShares); } /** * @notice Withdraws from funds from the Cake Vault * @param _shares: Number of shares to withdraw */ function withdraw(uint256 _shares) public notContract { UserInfo storage user = userInfo[msg.sender]; require(_shares > 0, "Nothing to withdraw"); require(_shares <= user.shares, "Withdraw amount exceeds balance"); uint256 currentAmount = (balanceOf().mul(_shares)).div(totalShares); user.shares = user.shares.sub(_shares); totalShares = totalShares.sub(_shares); uint256 bal = available(); if (bal < currentAmount) { uint256 balWithdraw = currentAmount.sub(bal); IMasterChef(masterchef).leaveStaking(balWithdraw); uint256 balAfter = available(); uint256 diff = balAfter.sub(bal); if (diff < balWithdraw) { currentAmount = bal.add(diff); } } if (block.timestamp < user.lastDepositedTime.add(withdrawFeePeriod)) { uint256 currentWithdrawFee = currentAmount.mul(withdrawFee).div(10000); token.safeTransfer(treasury, currentWithdrawFee); currentAmount = currentAmount.sub(currentWithdrawFee); } if (user.shares > 0) { user.cakeAtLastUserAction = user.shares.mul(balanceOf()).div(totalShares); } else { user.cakeAtLastUserAction = 0; } user.lastUserActionTime = block.timestamp; token.safeTransfer(msg.sender, currentAmount); emit Withdraw(msg.sender, currentAmount, _shares); } /** * @notice Custom logic for how much the vault allows to be borrowed * @dev The contract puts 100% of the tokens to work. */ function available() public view returns (uint256) { return token.balanceOf(address(this)); } /** * @notice Calculates the total underlying tokens * @dev It includes tokens held by the contract and held in MasterChef */ function balanceOf() public view returns (uint256) { (uint256 amount, ) = IMasterChef(masterchef).userInfo(0, address(this)); return token.balanceOf(address(this)).add(amount); } /** * @notice Deposits tokens into MasterChef to earn staking rewards */ function _earn() internal { uint256 bal = available(); if (bal > 0) { IMasterChef(masterchef).enterStaking(bal); } } /** * @notice Checks if address is a contract * @dev It prevents contract from being targetted */ function _isContract(address addr) internal view returns (bool) { uint256 size; assembly { size := extcodesize(addr) } return size > 0; } }