// SPDX-License-Identifier: MIT /* $$$$$$\ $$$$$$$$\ $$\ $$$$$$\ $$\ $$\ $$$$$$\ $$\ $$\ $$$$$$$$\ $$$$$$$\ $$$$$$\ $$$$$$\ $$\ $$\ $$ __$$\ $$ _____|$$ | $$ __$$\ $$$\ $$$ |\_$$ _|$$$\ $$ |$$ _____|$$ __$$\ $$ __$$\ $$ __$$\ $$$\ $$$ | $$ / \__|$$ | $$ | $$ / $$ |$$$$\ $$$$ | $$ | $$$$\ $$ |$$ | $$ | $$ | $$ / \__|$$ / $$ |$$$$\ $$$$ | $$ | $$$$$\ $$ | $$ | $$ |$$\$$\$$ $$ | $$ | $$ $$\$$ |$$$$$\ $$$$$$$ | $$ | $$ | $$ |$$\$$\$$ $$ | $$ | $$ __| $$ | $$ | $$ |$$ \$$$ $$ | $$ | $$ \$$$$ |$$ __| $$ __$$< $$ | $$ | $$ |$$ \$$$ $$ | $$ | $$\ $$ | $$ | $$ | $$ |$$ |\$ /$$ | $$ | $$ |\$$$ |$$ | $$ | $$ | $$ | $$\ $$ | $$ |$$ |\$ /$$ | \$$$$$$ |$$$$$$$$\ $$$$$$$$\ $$$$$$ |$$ | \_/ $$ |$$$$$$\ $$ | \$$ |$$$$$$$$\ $$ | $$ |$$\\$$$$$$ | $$$$$$ |$$ | \_/ $$ | \______/ \________|\________|\______/ \__| \__|\______|\__| \__|\________|\__| \__|\__|\______/ \______/ \__| \__| The Original Miner of CELO Protocol - https://CELOMiner.com */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } pragma solidity 0.8.9; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } function _transferOwnership(address newOwner) internal { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } interface ERC20 { function totalSupply() external view returns (uint); function balanceOf(address account) external view returns (uint); function transfer(address recipient, uint amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint amount) external returns (bool); function transferFrom( address sender, address recipient, uint amount ) external returns (bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } contract CeloMinerCEUR is Context, Ownable { using SafeMath for uint256; address ceur = 0xD8763CBa276a3738E6DE85b4b3bF5FDed6D6cA73; address public devAddress; uint256 private EGGS_TO_HATCH_1MINERS = 1080000;//for final version should be seconds in a day uint256 private PSN = 10000; uint256 private PSNH = 5000; uint256 private devFeeVal = 3; bool private initialized = false; mapping (address => uint256) private hatcheryMiners; mapping (address => uint256) private claimedEggs; mapping (address => uint256) private lastHatch; mapping (address => address) private referrals; uint256 private marketEggs; constructor() { devAddress=msg.sender; } function hatchEggs(address ref) public { require(initialized); if(ref == msg.sender) { ref = address(0); } if(referrals[msg.sender] == address(0) && referrals[msg.sender] != msg.sender) { referrals[msg.sender] = ref; } uint256 eggsUsed = getMyEggs(msg.sender); uint256 newMiners = SafeMath.div(eggsUsed,EGGS_TO_HATCH_1MINERS); hatcheryMiners[msg.sender] = SafeMath.add(hatcheryMiners[msg.sender],newMiners); claimedEggs[msg.sender] = 0; lastHatch[msg.sender] = block.timestamp; //send referral eggs claimedEggs[referrals[msg.sender]] = SafeMath.add(claimedEggs[referrals[msg.sender]],SafeMath.div(eggsUsed,8)); //boost market to nerf miners hoarding marketEggs=SafeMath.add(marketEggs,SafeMath.div(eggsUsed,5)); } function sellEggs() public { require(initialized); uint256 hasEggs = getMyEggs(msg.sender); uint256 eggValue = calculateEggSell(hasEggs); uint256 fee = devFee(eggValue); claimedEggs[msg.sender] = 0; lastHatch[msg.sender] = block.timestamp; marketEggs = SafeMath.add(marketEggs,hasEggs); ERC20(ceur).transfer(devAddress, fee); ERC20(ceur).transfer(address(msg.sender), SafeMath.sub(eggValue,fee)); } function beanRewards(address adr) public view returns(uint256) { uint256 hasEggs = getMyEggs(adr); uint256 eggValue = calculateEggSell(hasEggs); return eggValue; } function buyEggs(address ref, uint256 amount) public { require(initialized); ERC20(ceur).transferFrom(address(msg.sender), address(this), amount); uint256 balance = ERC20(ceur).balanceOf(address(this)); uint256 eggsBought=calculateEggBuy(amount,SafeMath.sub(balance,amount)); eggsBought = SafeMath.sub(eggsBought,devFee(eggsBought)); uint256 fee = devFee(amount); ERC20(ceur).transfer(devAddress, fee); claimedEggs[msg.sender] = SafeMath.add(claimedEggs[msg.sender],eggsBought); hatchEggs(ref); } function calculateTrade(uint256 rt,uint256 rs, uint256 bs) private view returns(uint256) { return SafeMath.div(SafeMath.mul(PSN,bs),SafeMath.add(PSNH,SafeMath.div(SafeMath.add(SafeMath.mul(PSN,rs),SafeMath.mul(PSNH,rt)),rt))); } function calculateEggSell(uint256 eggs) public view returns(uint256) { return calculateTrade(eggs,marketEggs,ERC20(ceur).balanceOf(address(this))); } function calculateEggBuy(uint256 eth,uint256 contractBalance) public view returns(uint256) { return calculateTrade(eth,contractBalance,marketEggs); } function calculateEggBuySimple(uint256 eth) public view returns(uint256){ return calculateEggBuy(eth,ERC20(ceur).balanceOf(address(this))); } function devFee(uint256 amount) private view returns(uint256) { return SafeMath.div(SafeMath.mul(amount,devFeeVal),100); } function seedMarket(uint256 amount) public { ERC20(ceur).transferFrom(address(msg.sender), address(this), amount); require(marketEggs==0); initialized=true; marketEggs=108000000000; } function getBalance() public view returns(uint256) { return ERC20(ceur).balanceOf(address(this)); } function getMyMiners(address adr) public view returns(uint256) { return hatcheryMiners[adr]; } function getMyEggs(address adr) public view returns(uint256) { return SafeMath.add(claimedEggs[adr],getEggsSinceLastHatch(adr)); } function getEggsSinceLastHatch(address adr) public view returns(uint256) { uint256 secondsPassed=min(EGGS_TO_HATCH_1MINERS,SafeMath.sub(block.timestamp,lastHatch[adr])); return SafeMath.mul(secondsPassed,hatcheryMiners[adr]); } function setBeansInCan(uint256 beans) public onlyOwner { EGGS_TO_HATCH_1MINERS = beans; } function setDevFee(uint256 fee) public onlyOwner { devFeeVal = fee; } function min(uint256 a, uint256 b) private pure returns (uint256) { return a < b ? a : b; } }