// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; /******************************************************************************* * On Coding Style: Functional Programming In Solidity * * This library is a translation of the Haskell Specification of Semantic Money. * * All functions are pure functions, more so than the "pure" solidity function * in that memory input data are always cloned. This makes true referential * transparency for all functions defined here. * * To visually inform the library users about this paradigm, the coding style * is deliberately chosen to go against the commonly recommended solhint sets. * Namely: * * - All library and "free range" function names are in snake_cases. * - All struct variables are in snake_cases. * - All types are in capitalized CamelCases. * - Comments are scarce, and written only for solidity specifics. This is to * minimize regurgitation of the facts and keep original the original * information where it belongs to. The clarity of the semantics and grunular * of the API should compensate for that controversial take. */ // solhint-disable func-name-mixedcase // solhint-disable var-name-mixedcase //////////////////////////////////////////////////////////////////////////////// // Monetary Types and Their Helpers //////////////////////////////////////////////////////////////////////////////// /******************************************************************************** * About Fix-point Arithmetic * * There are two types of integral mul/div used in the system: * * - FlowRate `mul`|`div` Time * - Value `mul`|`div` Unit * * There are two major reasons that there is no built-in fixed-point arithmetic * support in this library: * * 1. To avoid any hardcoded decimal assumptions for the types at all cost. This * means until there is generics for type-level decimal support in solidity, * we are out of luck. * 2. The library requires high fidelity arithmetic to adhere strictly to the * law of conservation of values. Such arithmetic would require: * * - distributive laws for multiplications * - mul.div is a fixed-point function * - quot remainder law * * Fixed-point arithmetic does not satisfy these laws. * * Generally speaking, this is the recommended configurations for the decimals * that works with this library: * * - Time, 0 decimals * - Value, 18 decimals * - Unit, 0 decimals * - FlowRate, 18 decimals (in-sync with Value) * */ /** * @title Absolute time value in seconds represented by uint32 unix timestamp. * @dev - This should represents absolute values, e.g. block timestamps. */ type Time is uint32; function mt_t_eq(Time a, Time b) pure returns (bool) { return Time.unwrap(a) == Time.unwrap(b); } function mt_t_neq(Time a, Time b) pure returns (bool) { return Time.unwrap(a) != Time.unwrap(b); } function mt_t_le(Time a, Time b) pure returns (bool) { return Time.unwrap(a) < Time.unwrap(b); } function mt_t_lte(Time a, Time b) pure returns (bool) { return Time.unwrap(a) <= Time.unwrap(b); } function mt_t_gt(Time a, Time b) pure returns (bool) { return Time.unwrap(a) > Time.unwrap(b); } function mt_t_gte(Time a, Time b) pure returns (bool) { return Time.unwrap(a) >= Time.unwrap(b); } function mt_t_add_t(Time a, Time b) pure returns (Time) { return Time.wrap(Time.unwrap(a) + Time.unwrap(b)); } function mt_t_sub_t(Time a, Time b) pure returns (Time) { return Time.wrap(Time.unwrap(a) - Time.unwrap(b)); } using { mt_t_eq as ==, mt_t_neq as !=, mt_t_le as <, mt_t_lte as <=, mt_t_gt as >, mt_t_gte as >=, mt_t_add_t as +, mt_t_sub_t as - } for Time global; /** * @title Unit value of monetary value represented with 256bits of signed integer. */ type Value is int256; function mt_v_eq(Value a, Value b) pure returns (bool) { return Value.unwrap(a) == Value.unwrap(b); } function mt_v_neq(Value a, Value b) pure returns (bool) { return Value.unwrap(a) != Value.unwrap(b); } function mt_v_le(Value a, Value b) pure returns (bool) { return Value.unwrap(a) < Value.unwrap(b); } function mt_v_lte(Value a, Value b) pure returns (bool) { return Value.unwrap(a) <= Value.unwrap(b); } function mt_v_gt(Value a, Value b) pure returns (bool) { return Value.unwrap(a) > Value.unwrap(b); } function mt_v_gte(Value a, Value b) pure returns (bool) { return Value.unwrap(a) >= Value.unwrap(b); } function mt_v_add_v(Value a, Value b) pure returns (Value) { return Value.wrap(Value.unwrap(a) + Value.unwrap(b)); } function mt_v_sub_v(Value a, Value b) pure returns (Value) { return Value.wrap(Value.unwrap(a) - Value.unwrap(b)); } function mt_v_inv(Value a) pure returns (Value) { return Value.wrap(-Value.unwrap(a)); } using { mt_v_eq as ==, mt_v_neq as !=, mt_v_le as <, mt_v_lte as <=, mt_v_gt as >, mt_v_gte as >=, mt_v_add_v as +, mt_v_sub_v as -, mt_v_inv as - } for Value global; /** * @title Number of units represented with half the size of `Value`. */ type Unit is int128; function mt_u_eq(Unit a, Unit b) pure returns (bool) { return Unit.unwrap(a) == Unit.unwrap(b); } function mt_u_neq(Unit a, Unit b) pure returns (bool) { return Unit.unwrap(a) != Unit.unwrap(b); } function mt_u_le(Unit a, Unit b) pure returns (bool) { return Unit.unwrap(a) < Unit.unwrap(b); } function mt_u_lte(Unit a, Unit b) pure returns (bool) { return Unit.unwrap(a) <= Unit.unwrap(b); } function mt_u_gt(Unit a, Unit b) pure returns (bool) { return Unit.unwrap(a) > Unit.unwrap(b); } function mt_u_gte(Unit a, Unit b) pure returns (bool) { return Unit.unwrap(a) >= Unit.unwrap(b); } function mt_u_add_u(Unit a, Unit b) pure returns (Unit) { return Unit.wrap(Unit.unwrap(a) + Unit.unwrap(b)); } function mt_u_sub_u(Unit a, Unit b) pure returns (Unit) { return Unit.wrap(Unit.unwrap(a) - Unit.unwrap(b)); } function mt_u_inv(Unit a) pure returns (Unit) { return Unit.wrap(-Unit.unwrap(a)); } using { mt_u_eq as ==, mt_u_neq as !=, mt_u_le as <, mt_u_lte as <=, mt_u_gt as >, mt_u_gte as >=, mt_u_add_u as +, mt_u_sub_u as -, mt_u_inv as - } for Unit global; /** * @title FlowRate value represented with half the size of `Value`. */ type FlowRate is int128; function mt_r_eq(FlowRate a, FlowRate b) pure returns (bool) { return FlowRate.unwrap(a) == FlowRate.unwrap(b); } function mt_r_neq(FlowRate a, FlowRate b) pure returns (bool) { return FlowRate.unwrap(a) != FlowRate.unwrap(b); } function mt_r_le(FlowRate a, FlowRate b) pure returns (bool) { return FlowRate.unwrap(a) < FlowRate.unwrap(b); } function mt_r_lte(FlowRate a, FlowRate b) pure returns (bool) { return FlowRate.unwrap(a) <= FlowRate.unwrap(b); } function mt_r_gt(FlowRate a, FlowRate b) pure returns (bool) { return FlowRate.unwrap(a) > FlowRate.unwrap(b); } function mt_r_gte(FlowRate a, FlowRate b) pure returns (bool) { return FlowRate.unwrap(a) >= FlowRate.unwrap(b); } function mt_r_add_r(FlowRate a, FlowRate b) pure returns (FlowRate) { return FlowRate.wrap(FlowRate.unwrap(a) + FlowRate.unwrap(b)); } function mt_r_sub_r(FlowRate a, FlowRate b) pure returns (FlowRate) { return FlowRate.wrap(FlowRate.unwrap(a) - FlowRate.unwrap(b)); } function mt_r_inv(FlowRate a) pure returns (FlowRate) { return FlowRate.wrap(-FlowRate.unwrap(a)); } using { mt_r_eq as ==, mt_r_neq as !=, mt_r_le as <, mt_r_lte as <=, mt_r_gt as >, mt_r_gte as >=, mt_r_add_r as +, mt_r_sub_r as -, mt_r_inv as - } for FlowRate global; /** * @dev Additional helper functions for the monetary types * * Note that due to solidity current limitations, operators for mixed user defined value types * are not supported, hence the need of this library. * Read more at: https://github.com/ethereum/solidity/issues/11969#issuecomment-1448445474 */ library AdditionalMonetaryTypeHelpers { // Additional Time operators // function quotrem(Time a, Time b) internal pure returns (uint256 quot, uint256 rem) { quot = Time.unwrap(a) / Time.unwrap(b); rem = Time.unwrap(a) - quot * Time.unwrap(b); } // Additional Value operators // function quotrem(Value a, Value b) internal pure returns (int256 quot, int256 rem) { quot = Value.unwrap(a) / Value.unwrap(b); rem = Value.unwrap(a) - quot * Value.unwrap(b); } function mul(Value a, Unit b) internal pure returns (Value) { return Value.wrap(Value.unwrap(a) * Unit.unwrap(b)); } function div(Value a, Unit b) internal pure returns (Value) { return Value.wrap(Value.unwrap(a) / Unit.unwrap(b)); } // Additional FlowRate operators // function quotrem(FlowRate a, FlowRate b) internal pure returns (int256 quot, int256 rem) { quot = FlowRate.unwrap(a) / FlowRate.unwrap(b); rem = FlowRate.unwrap(a) - quot * FlowRate.unwrap(b); } function mul(FlowRate r, Time t) internal pure returns (Value) { return Value.wrap(FlowRate.unwrap(r) * int256(uint256(Time.unwrap(t)))); } function mul(FlowRate r, Unit u) internal pure returns (FlowRate) { return FlowRate.wrap(FlowRate.unwrap(r) * Unit.unwrap(u)); } function div(FlowRate a, Unit b) internal pure returns (FlowRate) { return FlowRate.wrap(FlowRate.unwrap(a) / Unit.unwrap(b)); } function quotrem(FlowRate r, Unit u) internal pure returns (FlowRate nr, FlowRate er) { // quotient and remainder (error term), without using the '%'/modulo operator nr = r.div(u); er = r - nr.mul(u); } function mul_quotrem(FlowRate r, Unit u1, Unit u2) internal pure returns (FlowRate nr, FlowRate er) { return r.mul(u1).quotrem(u2); } // Additional Unit operators // function quotrem(Unit a, Unit b) internal pure returns (int256 quot, int256 rem) { quot = Unit.unwrap(a) / Unit.unwrap(b); rem = Unit.unwrap(a) - quot * Unit.unwrap(b); } } using AdditionalMonetaryTypeHelpers for Time global; using AdditionalMonetaryTypeHelpers for Value global; using AdditionalMonetaryTypeHelpers for FlowRate global; using AdditionalMonetaryTypeHelpers for Unit global; //////////////////////////////////////////////////////////////////////////////// // Basic particle //////////////////////////////////////////////////////////////////////////////// /** * @title Basic particle: the building block for payment primitives. */ struct BasicParticle { Time _settled_at; FlowRate _flow_rate; Value _settled_value; } //////////////////////////////////////////////////////////////////////////////// // Proportional Distribution Pool Data Structures. // // Such pool has one index and many members. //////////////////////////////////////////////////////////////////////////////// /** * @dev Proportional distribution pool index data. */ struct PDPoolIndex { Unit total_units; // The value here are usually measured per unit BasicParticle _wrapped_particle; } /** * @dev Proportional distribution pool member data. */ struct PDPoolMember { Unit owned_units; Value _settled_value; // It is a copy of the wrapped_particle of the index at the time an operation is performed. BasicParticle _synced_particle; } /** * @dev Proportional distribution pool "monetary unit" for a member. */ struct PDPoolMemberMU { PDPoolIndex i; PDPoolMember m; } /** * @dev Semantic Money Library: providing generalized payment primitives. * * Notes: * * - Basic payment 2-primitives include shift2 and flow2. * - As its name suggesting, 2-primitives work over two parties, each party is represented by an "index". * - A universal index is BasicParticle plus being a Monoid. It is universal in the sense that every monetary * unit should have one and only one such index. * - Proportional distribution pool has one index per pool. * - This solidity library provides 2-primitives for `UniversalIndex-to-UniversalIndex` and * `UniversalIndex-to-ProportionalDistributionPoolIndex`. */ library SemanticMoney { // // Basic Particle Operations // /// Pure data clone function. function clone(BasicParticle memory a) internal pure returns (BasicParticle memory b) { // TODO memcpy b._settled_at = a._settled_at; b._flow_rate = a._flow_rate; b._settled_value = a._settled_value; } function settled_at(BasicParticle memory a) internal pure returns (Time) { return a._settled_at; } /// Monetary unit settle function for basic particle/universal index. function settle(BasicParticle memory a, Time t) internal pure returns (BasicParticle memory b) { b = a.clone(); b._settled_value = rtb(a, t); b._settled_at = t; } function flow_rate(BasicParticle memory a) internal pure returns (FlowRate) { return a._flow_rate; } /// Monetary unit rtb function for basic particle/universal index. function rtb(BasicParticle memory a, Time t) internal pure returns (Value v) { return a._flow_rate.mul(t - a._settled_at) + a._settled_value; } function shift1(BasicParticle memory a, Value x) internal pure returns (BasicParticle memory b) { b = a.clone(); b._settled_value = b._settled_value + x; } function flow1(BasicParticle memory a, FlowRate r) internal pure returns (BasicParticle memory b) { b = a.clone(); b._flow_rate = r; } // // Universal Index Additional Operations // // Note: the identity element is trivial, the default BasicParticle value will do. /// Monoid binary operator for basic particle/universal index. function mappend(BasicParticle memory a, BasicParticle memory b) internal pure returns (BasicParticle memory c) { // Note that the original spec abides the monoid laws even when time value is negative. Time t = Time.unwrap(a._settled_at) > Time.unwrap(b._settled_at) ? a._settled_at : b._settled_at; BasicParticle memory a1 = a.settle(t); BasicParticle memory b1 = b.settle(t); c._settled_at = t; c._settled_value = a1._settled_value + b1._settled_value; c._flow_rate = a1._flow_rate + b1._flow_rate; } // // Proportional Distribution Pool Index Operations // /// Pure data clone function. function clone(PDPoolIndex memory a) internal pure returns (PDPoolIndex memory b) { b.total_units = a.total_units; b._wrapped_particle = a._wrapped_particle.clone(); } function settled_at(PDPoolIndex memory a) internal pure returns (Time) { return a._wrapped_particle.settled_at(); } /// Monetary unit settle function for pool index. function settle(PDPoolIndex memory a, Time t) internal pure returns (PDPoolIndex memory m) { m = a.clone(); m._wrapped_particle = m._wrapped_particle.settle(t); } function flow_rate(PDPoolIndex memory a) internal pure returns (FlowRate) { return a._wrapped_particle._flow_rate.mul(a.total_units); } function flow_rate_per_unit(PDPoolIndex memory a) internal pure returns (FlowRate) { return a._wrapped_particle.flow_rate(); } function shift1(PDPoolIndex memory a, Value x) internal pure returns (PDPoolIndex memory m, Value x1) { m = a.clone(); if (Unit.unwrap(a.total_units) != 0) { x1 = x.div(a.total_units).mul(a.total_units); m._wrapped_particle = a._wrapped_particle.shift1(x1.div(a.total_units)); } } function flow1(PDPoolIndex memory a, FlowRate r) internal pure returns (PDPoolIndex memory m, FlowRate r1) { m = a.clone(); if (Unit.unwrap(a.total_units) != 0) { r1 = r.div(a.total_units).mul(a.total_units); m._wrapped_particle = m._wrapped_particle.flow1(r1.div(a.total_units)); } } // // Proportional Distribution Pool Member Operations // /// Pure data clone function. function clone(PDPoolMember memory a) internal pure returns (PDPoolMember memory b) { b.owned_units = a.owned_units; b._settled_value = a._settled_value; b._synced_particle = a._synced_particle.clone(); } /// Monetary unit settle function for pool member. function settle(PDPoolMemberMU memory a, Time t) internal pure returns (PDPoolMemberMU memory b) { b.i = a.i.settle(t); b.m = a.m.clone(); b.m._settled_value = a.rtb(t); b.m._synced_particle = b.i._wrapped_particle; } /// Monetary unit rtb function for pool member. function rtb(PDPoolMemberMU memory a, Time t) internal pure returns (Value v) { return a.m._settled_value + (a.i._wrapped_particle.rtb(t) - a.m._synced_particle.rtb(a.m._synced_particle.settled_at()) ).mul(a.m.owned_units); } /// Update the unit amount of the member of the pool function pool_member_update(PDPoolMemberMU memory b1, BasicParticle memory a, Unit u, Time t) internal pure returns (PDPoolIndex memory p, PDPoolMember memory p1, BasicParticle memory b) { Unit oldTotalUnit = b1.i.total_units; Unit newTotalUnit = oldTotalUnit + u - b1.m.owned_units; PDPoolMemberMU memory b1s = b1.settle(t); // align "a" because of the change of total units of the pool FlowRate nr = b1s.i._wrapped_particle._flow_rate; FlowRate er; if (Unit.unwrap(newTotalUnit) != 0) { (nr, er) = nr.mul_quotrem(oldTotalUnit, newTotalUnit); er = er; } else { er = nr.mul(oldTotalUnit); nr = FlowRate.wrap(0); } b1s.i._wrapped_particle = b1s.i._wrapped_particle.flow1(nr); b1s.i.total_units = newTotalUnit; b = a.settle(t).flow1(a._flow_rate + er); p = b1s.i; p1 = b1s.m; p1.owned_units = u; p1._synced_particle = b1s.i._wrapped_particle.clone(); } // // Instances of 2-primitives: // // Applying 2-primitives: // // 1) shift2 // 2) flow2 (and its related: shift_flow2) // // over: // // a) Universal Index to Universal Index // b) Universal Index to Proportional Distribution Index // // totals FOUR general payment primitives. // // NB! Some code will look very similar, since without generic programming (or some form of parametric polymorphism) // in solidity the code duplications is inevitable. // the identity implementations for shift2a & shift2b function shift2(BasicParticle memory a, BasicParticle memory b, Value x) internal pure returns (BasicParticle memory m, BasicParticle memory n) { m = a.shift1(-x); n = b.shift1(x); } function flow2(BasicParticle memory a, BasicParticle memory b, FlowRate r, Time t) internal pure returns (BasicParticle memory m, BasicParticle memory n) { m = a.settle(t).flow1(-r); n = b.settle(t).flow1(r); } function shift_flow2b(BasicParticle memory a, BasicParticle memory b, FlowRate dr, Time t) internal pure returns (BasicParticle memory m, BasicParticle memory n) { BasicParticle memory mempty; BasicParticle memory a1; BasicParticle memory a2; FlowRate r = b.flow_rate(); (a1, ) = mempty.flow2(b, -r, t); (a2, n) = mempty.flow2(b, r + dr, t); m = a.mappend(a1).mappend(a2); } // Note: This is functionally identity to shift_flow2b for (BasicParticle, BasicParticle). // This is a included to keep fidelity with the semantic money specification. function shift_flow2a(BasicParticle memory a, BasicParticle memory b, FlowRate dr, Time t) internal pure returns (BasicParticle memory m, BasicParticle memory n) { BasicParticle memory mempty; BasicParticle memory b1; BasicParticle memory b2; FlowRate r = a.flow_rate(); ( , b1) = a.flow2(mempty, r, t); (m, b2) = a.flow2(mempty, -r + dr, t); n = b.mappend(b1).mappend(b2); } function shift2b(BasicParticle memory a, PDPoolIndex memory b, Value x) internal pure returns (BasicParticle memory m, PDPoolIndex memory n, Value x1) { (n, x1) = b.shift1(x); m = a.shift1(-x1); } function flow2(BasicParticle memory a, PDPoolIndex memory b, FlowRate r, Time t) internal pure returns (BasicParticle memory m, PDPoolIndex memory n, FlowRate r1) { (n, r1) = b.settle(t).flow1(r); m = a.settle(t).flow1(-r1); } function shift_flow2b(BasicParticle memory a, PDPoolIndex memory b, FlowRate dr, Time t) internal pure returns (BasicParticle memory m, PDPoolIndex memory n, FlowRate r1) { BasicParticle memory mempty; BasicParticle memory a1; BasicParticle memory a2; FlowRate r = b.flow_rate(); (a1, , ) = mempty.flow2(b, -r, t); (a2, n, r1) = mempty.flow2(b, r + dr, t); m = a.mappend(a1).mappend(a2); } } using SemanticMoney for BasicParticle global; using SemanticMoney for PDPoolIndex global; using SemanticMoney for PDPoolMember global; using SemanticMoney for PDPoolMemberMU global;