// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity 0.7.5; library FullMath { function fullMul(uint256 x, uint256 y) private pure returns (uint256 l, uint256 h) { uint256 mm = mulmod(x, y, uint256(-1)); l = x * y; h = mm - l; if (mm < l) h -= 1; } function fullDiv( uint256 l, uint256 h, uint256 d ) private pure returns (uint256) { uint256 pow2 = d & -d; d /= pow2; l /= pow2; l += h * ((-pow2) / pow2 + 1); uint256 r = 1; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; return l * r; } function mulDiv( uint256 x, uint256 y, uint256 d ) internal pure returns (uint256) { (uint256 l, uint256 h) = fullMul(x, y); uint256 mm = mulmod(x, y, d); if (mm > l) h -= 1; l -= mm; require(h < d, "FullMath::mulDiv: overflow"); return fullDiv(l, h, d); } } library Babylonian { function sqrt(uint256 x) internal pure returns (uint256) { if (x == 0) return 0; uint256 xx = x; uint256 r = 1; if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; } if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; } if (xx >= 0x100000000) { xx >>= 32; r <<= 16; } if (xx >= 0x10000) { xx >>= 16; r <<= 8; } if (xx >= 0x100) { xx >>= 8; r <<= 4; } if (xx >= 0x10) { xx >>= 4; r <<= 2; } if (xx >= 0x8) { r <<= 1; } r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; // Seven iterations should be enough uint256 r1 = x / r; return (r < r1 ? r : r1); } } library BitMath { function mostSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0, "BitMath::mostSignificantBit: zero"); if (x >= 0x100000000000000000000000000000000) { x >>= 128; r += 128; } if (x >= 0x10000000000000000) { x >>= 64; r += 64; } if (x >= 0x100000000) { x >>= 32; r += 32; } if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 0x4) { x >>= 2; r += 2; } if (x >= 0x2) r += 1; } } library FixedPoint { // range: [0, 2**112 - 1] // resolution: 1 / 2**112 struct uq112x112 { uint224 _x; } // range: [0, 2**144 - 1] // resolution: 1 / 2**112 struct uq144x112 { uint256 _x; } uint8 private constant RESOLUTION = 112; uint256 private constant Q112 = 0x10000000000000000000000000000; uint256 private constant Q224 = 0x100000000000000000000000000000000000000000000000000000000; uint256 private constant LOWER_MASK = 0xffffffffffffffffffffffffffff; // decimal of UQ*x112 (lower 112 bits) // decode a UQ112x112 into a uint112 by truncating after the radix point function decode(uq112x112 memory self) internal pure returns (uint112) { return uint112(self._x >> RESOLUTION); } // decode a uq112x112 into a uint with 18 decimals of precision function decode112with18(uq112x112 memory self) internal pure returns (uint256) { return uint256(self._x) / 5192296858534827; } function fraction(uint256 numerator, uint256 denominator) internal pure returns (uq112x112 memory) { require(denominator > 0, "FixedPoint::fraction: division by zero"); if (numerator == 0) return FixedPoint.uq112x112(0); if (numerator <= uint144(-1)) { uint256 result = (numerator << RESOLUTION) / denominator; require(result <= uint224(-1), "FixedPoint::fraction: overflow"); return uq112x112(uint224(result)); } else { uint256 result = FullMath.mulDiv(numerator, Q112, denominator); require(result <= uint224(-1), "FixedPoint::fraction: overflow"); return uq112x112(uint224(result)); } } // square root of a UQ112x112 // lossy between 0/1 and 40 bits function sqrt(uq112x112 memory self) internal pure returns (uq112x112 memory) { if (self._x <= uint144(-1)) { return uq112x112(uint224(Babylonian.sqrt(uint256(self._x) << 112))); } uint8 safeShiftBits = 255 - BitMath.mostSignificantBit(self._x); safeShiftBits -= safeShiftBits % 2; return uq112x112( uint224( Babylonian.sqrt(uint256(self._x) << safeShiftBits) << ((112 - safeShiftBits) / 2) ) ); } } library SafeMath { function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } function sqrrt(uint256 a) internal pure returns (uint256 c) { if (a > 3) { c = a; uint256 b = add(div(a, 2), 1); while (b < c) { c = b; b = div(add(div(a, b), b), 2); } } else if (a != 0) { c = 1; } } } interface IERC20 { function decimals() external view returns (uint8); } interface IUniswapV2ERC20 { function totalSupply() external view returns (uint256); } interface IUniswapV2Pair is IUniswapV2ERC20 { function getReserves() external view returns ( uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast ); function token0() external view returns (address); function token1() external view returns (address); } interface IBondingCalculator { function valuation(address pair_, uint256 amount_) external view returns (uint256 _value); } contract ImmortalBondingCalculatorV2 is IBondingCalculator { using FixedPoint for *; using SafeMath for uint256; using SafeMath for uint112; constructor() {} function valuation(address _pair, uint256 amount_) external view override returns (uint256 _value) { (uint256 reserve0, , ) = IUniswapV2Pair(_pair).getReserves(); uint256 totalLPSupply = IUniswapV2Pair(_pair).totalSupply(); _value = FixedPoint .fraction(amount_, totalLPSupply) .decode112with18() .mul(reserve0) .mul(2) .div(1e27); } }