pragma solidity 0.5.10; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract Context { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. constructor () internal { } // solhint-disable-previous-line no-empty-blocks function _msgSender() internal view returns (address payable) { return msg.sender; } function _msgData() internal view returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } /** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */ interface TRC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } /** * @dev Implementation of the {TRC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20Mintable}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {TRC20-approve}. */ contract ERC20 is Context, TRC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; // allocating 10 million tokens for xswap liquidity, promotions, airdrop and dev costs uint256 private _totalSupply = 10000000 * (10 ** 8); constructor() public { _balances[msg.sender] = _totalSupply; } /** * @dev See {TRC20-totalSupply}. */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev See {TRC20-balanceOf}. */ function balanceOf(address account) public view returns (uint256) { return _balances[account]; } /** * @dev See {TRC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {TRC20-allowance}. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {TRC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {TRC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for `sender`'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {TRC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {TRC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev External function to destroys `amount` tokens from `account`, reducing the * total supply. */ function burn(uint256 amount) external { require(_balances[msg.sender] >= amount, "ERC20: not enough balance!"); _burn(msg.sender, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Destroys `amount` tokens from `account`.`amount` is then deducted * from the caller's allowance. * * See {_burn} and {_approve}. */ function _burnFrom(address account, uint256 amount) internal { _burn(account, amount); _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance")); } } contract GlobalsAndUtility is ERC20 { /* XfLobbyEnter */ event XfLobbyEnter( uint256 timestamp, uint256 enterDay, uint256 indexed entryIndex, uint256 indexed rawAmount ); /* XfLobbyExit */ event XfLobbyExit( uint256 timestamp, uint256 enterDay, uint256 indexed entryIndex, uint256 indexed xfAmount, address indexed referrerAddr ); /* DailyDataUpdate */ event DailyDataUpdate( address indexed updaterAddr, uint256 timestamp, uint256 beginDay, uint256 endDay ); /* StakeStart */ event StakeStart( uint40 indexed stakeId, address indexed stakerAddr, uint256 stakedSuns, uint256 stakeShares, uint256 stakedDays ); /* StakeGoodAccounting */ event StakeGoodAccounting( uint40 indexed stakeId, address indexed stakerAddr, address indexed senderAddr, uint256 stakedSuns, uint256 stakeShares, uint256 payout, uint256 penalty ); /* StakeEnd */ event StakeEnd( uint40 indexed stakeId, uint40 prevUnlocked, address indexed stakerAddr, uint256 lockedDay, uint256 servedDays, uint256 stakedSuns, uint256 stakeShares, uint256 dividends, uint256 payout, uint256 penalty, uint256 stakeReturn ); /* ShareRateChange */ event ShareRateChange( uint40 indexed stakeId, uint256 timestamp, uint256 newShareRate ); /* ELCK allocation share address */ address payable internal constant ELCK_SHARE_ADDR = 0x2F6391B9E817033706540D1CFE416b6e68e51ca0; uint8 internal LAST_FLUSHED_DAY = 1; /* ERC20 constants */ string public constant name = "ELCK"; string public constant symbol = "ELCK"; uint8 public constant decimals = 8; /* Suns per Satoshi = 10,000 * 1e8 / 1e8 = 1e4 */ uint256 private constant SUNS_PER_ELCK = 10 ** uint256(decimals); // 1e8 /* Time of contract launch (08-12-2020 T00:00:00Z) */ uint256 internal constant LAUNCH_TIME = 1607385600; /* Start of claim phase */ uint256 internal constant PRE_CLAIM_DAYS = 1; uint256 internal constant CLAIM_STARTING_AMOUNT = 5000000 * (10 ** 8); uint256 internal constant CLAIM_LOWEST_AMOUNT = 100000 * (10 ** 8); uint256 internal constant CLAIM_PHASE_START_DAY = PRE_CLAIM_DAYS; /* Number of words to hold 1 bit for each transform lobby day */ uint256 internal constant XF_LOBBY_DAY_WORDS = ((1 + (50 * 7)) + 255) >> 8; /* Stake timing parameters */ uint256 internal constant MIN_STAKE_DAYS = 1; uint256 internal constant MAX_STAKE_DAYS = 365; uint256 internal constant EARLY_PENALTY_MIN_DAYS = 90; uint256 private constant LATE_PENALTY_GRACE_WEEKS = 2; uint256 internal constant LATE_PENALTY_GRACE_DAYS = LATE_PENALTY_GRACE_WEEKS * 7; uint256 private constant LATE_PENALTY_SCALE_WEEKS = 100; uint256 internal constant LATE_PENALTY_SCALE_DAYS = LATE_PENALTY_SCALE_WEEKS * 7; /* Stake shares Longer Pays Better bonus constants used by _stakeStartBonusSuns() */ uint256 private constant LPB_BONUS_PERCENT = 20; uint256 private constant LPB_BONUS_MAX_PERCENT = 200; uint256 internal constant LPB = 364 * 100 / LPB_BONUS_PERCENT; uint256 internal constant LPB_MAX_DAYS = LPB * LPB_BONUS_MAX_PERCENT / 100; /* Stake shares Bigger Pays Better bonus constants used by _stakeStartBonusSuns() */ uint256 private constant BPB_BONUS_PERCENT = 10; uint256 private constant BPB_MAX_ELCK = 7 * 1e6; uint256 internal constant BPB_MAX_SUNS = BPB_MAX_ELCK * SUNS_PER_ELCK; uint256 internal constant BPB = BPB_MAX_SUNS * 100 / BPB_BONUS_PERCENT; /* Share rate is scaled to increase precision */ uint256 internal constant SHARE_RATE_SCALE = 1e5; /* Share rate max (after scaling) */ uint256 internal constant SHARE_RATE_UINT_SIZE = 40; uint256 internal constant SHARE_RATE_MAX = (1 << SHARE_RATE_UINT_SIZE) - 1; /* weekly staking bonus */ uint8 internal constant BONUS_DAY_SCALE = 2; /* Globals expanded for memory (except _latestStakeId) and compact for storage */ struct GlobalsCache { uint256 _lockedSunsTotal; uint256 _nextStakeSharesTotal; uint256 _shareRate; uint256 _stakePenaltyTotal; uint256 _dailyDataCount; uint256 _stakeSharesTotal; uint40 _latestStakeId; uint256 _currentDay; } struct GlobalsStore { uint72 lockedSunsTotal; uint72 nextStakeSharesTotal; uint40 shareRate; uint72 stakePenaltyTotal; uint16 dailyDataCount; uint72 stakeSharesTotal; uint40 latestStakeId; } GlobalsStore public globals; /* Daily data */ struct DailyDataStore { uint72 dayPayoutTotal; uint256 dayDividends; uint72 dayStakeSharesTotal; } mapping(uint256 => DailyDataStore) public dailyData; /* Stake expanded for memory (except _stakeId) and compact for storage */ struct StakeCache { uint40 _stakeId; uint256 _stakedSuns; uint256 _stakeShares; uint256 _lockedDay; uint256 _stakedDays; uint256 _unlockedDay; } struct StakeStore { uint40 stakeId; uint72 stakedSuns; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; uint16 unlockedDay; } mapping(address => StakeStore[]) public stakeLists; /* Temporary state for calculating daily rounds */ struct DailyRoundState { uint256 _allocSupplyCached; uint256 _payoutTotal; } struct XfLobbyEntryStore { uint96 rawAmount; address referrerAddr; } struct XfLobbyQueueStore { uint40 headIndex; uint40 tailIndex; mapping(uint256 => XfLobbyEntryStore) entries; } mapping(uint256 => uint256) public xfLobby; mapping(uint256 => mapping(address => XfLobbyQueueStore)) public xfLobbyMembers; /** * @dev PUBLIC FACING: Optionally update daily data for a smaller * range to reduce gas cost for a subsequent operation * @param beforeDay Only update days before this day number (optional; 0 for current day) */ function dailyDataUpdate(uint256 beforeDay) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* Skip pre-claim period */ require(g._currentDay > CLAIM_PHASE_START_DAY, "ELCK: Too early"); if (beforeDay != 0) { require(beforeDay <= g._currentDay, "ELCK: beforeDay cannot be in the future"); _dailyDataUpdate(g, beforeDay, false); } else { /* Default to updating before current day */ _dailyDataUpdate(g, g._currentDay, false); } _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: External helper to return multiple values of daily data with * a single call. * @param beginDay First day of data range * @param endDay Last day (non-inclusive) of data range * @return array of day stake shares total * @return array of day payout total */ function dailyDataRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory _dayStakeSharesTotal, uint256[] memory _dayPayoutTotal, uint256[] memory _dayDividends) { require(beginDay < endDay && endDay <= globals.dailyDataCount, "ELCK: range invalid"); _dayStakeSharesTotal = new uint256[](endDay - beginDay); _dayPayoutTotal = new uint256[](endDay - beginDay); _dayDividends = new uint256[](endDay - beginDay); uint256 src = beginDay; uint256 dst = 0; do { _dayStakeSharesTotal[dst] = uint256(dailyData[src].dayStakeSharesTotal); _dayPayoutTotal[dst++] = uint256(dailyData[src].dayPayoutTotal); _dayDividends[dst++] = dailyData[src].dayDividends; } while (++src < endDay); return (_dayStakeSharesTotal, _dayPayoutTotal, _dayDividends); } /** * @dev PUBLIC FACING: External helper to return most global info with a single call. * Ugly implementation due to limitations of the standard ABI encoder. * @return Fixed array of values */ function globalInfo() external view returns (uint256[10] memory) { return [ globals.lockedSunsTotal, globals.nextStakeSharesTotal, globals.shareRate, globals.stakePenaltyTotal, globals.dailyDataCount, globals.stakeSharesTotal, globals.latestStakeId, block.timestamp, totalSupply(), xfLobby[_currentDay()] ]; } /** * @dev PUBLIC FACING: ERC20 totalSupply() is the circulating supply and does not include any * staked Suns. allocatedSupply() includes both. * @return Allocated Supply in Suns */ function allocatedSupply() external view returns (uint256) { return totalSupply() + globals.lockedSunsTotal; } /** * @dev PUBLIC FACING: External helper for the current day number since launch time * @return Current day number (zero-based) */ function currentDay() external view returns (uint256) { return _currentDay(); } function _currentDay() internal view returns (uint256) { if (block.timestamp < LAUNCH_TIME){ return 0; }else{ return (block.timestamp - LAUNCH_TIME) / 1 days; } } function _dailyDataUpdateAuto(GlobalsCache memory g) internal { _dailyDataUpdate(g, g._currentDay, true); } function _globalsLoad(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal view { g._lockedSunsTotal = globals.lockedSunsTotal; g._nextStakeSharesTotal = globals.nextStakeSharesTotal; g._shareRate = globals.shareRate; g._stakePenaltyTotal = globals.stakePenaltyTotal; g._dailyDataCount = globals.dailyDataCount; g._stakeSharesTotal = globals.stakeSharesTotal; g._latestStakeId = globals.latestStakeId; g._currentDay = _currentDay(); _globalsCacheSnapshot(g, gSnapshot); } function _globalsCacheSnapshot(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal pure { gSnapshot._lockedSunsTotal = g._lockedSunsTotal; gSnapshot._nextStakeSharesTotal = g._nextStakeSharesTotal; gSnapshot._shareRate = g._shareRate; gSnapshot._stakePenaltyTotal = g._stakePenaltyTotal; gSnapshot._dailyDataCount = g._dailyDataCount; gSnapshot._stakeSharesTotal = g._stakeSharesTotal; gSnapshot._latestStakeId = g._latestStakeId; } function _globalsSync(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal { if (g._lockedSunsTotal != gSnapshot._lockedSunsTotal || g._nextStakeSharesTotal != gSnapshot._nextStakeSharesTotal || g._shareRate != gSnapshot._shareRate || g._stakePenaltyTotal != gSnapshot._stakePenaltyTotal) { globals.lockedSunsTotal = uint72(g._lockedSunsTotal); globals.nextStakeSharesTotal = uint72(g._nextStakeSharesTotal); globals.shareRate = uint40(g._shareRate); globals.stakePenaltyTotal = uint72(g._stakePenaltyTotal); } if (g._dailyDataCount != gSnapshot._dailyDataCount || g._stakeSharesTotal != gSnapshot._stakeSharesTotal || g._latestStakeId != gSnapshot._latestStakeId) { globals.dailyDataCount = uint16(g._dailyDataCount); globals.stakeSharesTotal = uint72(g._stakeSharesTotal); globals.latestStakeId = g._latestStakeId; } } function _stakeLoad(StakeStore storage stRef, uint40 stakeIdParam, StakeCache memory st) internal view { /* Ensure caller's stakeIndex is still current */ require(stakeIdParam == stRef.stakeId, "ELCK: stakeIdParam not in stake"); st._stakeId = stRef.stakeId; st._stakedSuns = stRef.stakedSuns; st._stakeShares = stRef.stakeShares; st._lockedDay = stRef.lockedDay; st._stakedDays = stRef.stakedDays; st._unlockedDay = stRef.unlockedDay; } function _stakeUpdate(StakeStore storage stRef, StakeCache memory st) internal { stRef.stakeId = st._stakeId; stRef.stakedSuns = uint72(st._stakedSuns); stRef.stakeShares = uint72(st._stakeShares); stRef.lockedDay = uint16(st._lockedDay); stRef.stakedDays = uint16(st._stakedDays); stRef.unlockedDay = uint16(st._unlockedDay); } function _stakeAdd( StakeStore[] storage stakeListRef, uint40 newStakeId, uint256 newStakedSuns, uint256 newStakeShares, uint256 newLockedDay, uint256 newStakedDays ) internal { stakeListRef.push( StakeStore( newStakeId, uint72(newStakedSuns), uint72(newStakeShares), uint16(newLockedDay), uint16(newStakedDays), uint16(0) // unlockedDay ) ); } /** * @dev Efficiently delete from an unordered array by moving the last element * to the "hole" and reducing the array length. Can change the order of the list * and invalidate previously held indexes. * @notice stakeListRef length and stakeIndex are already ensured valid in stakeEnd() * @param stakeListRef Reference to stakeLists[stakerAddr] array in storage * @param stakeIndex Index of the element to delete */ function _stakeRemove(StakeStore[] storage stakeListRef, uint256 stakeIndex) internal { uint256 lastIndex = stakeListRef.length - 1; /* Skip the copy if element to be removed is already the last element */ if (stakeIndex != lastIndex) { /* Copy last element to the requested element's "hole" */ stakeListRef[stakeIndex] = stakeListRef[lastIndex]; } /* Reduce the array length now that the array is contiguous. Surprisingly, 'pop()' uses less gas than 'stakeListRef.length = lastIndex' */ stakeListRef.pop(); } /** * @dev Estimate the stake payout for an incomplete day * @param g Cache of stored globals * @param stakeSharesParam Param from stake to calculate bonuses for * @param day Day to calculate bonuses for * @return Payout in Suns */ function _estimatePayoutRewardsDay(GlobalsCache memory g, uint256 stakeSharesParam, uint256 day) internal view returns (uint256 payout) { /* Prevent updating state for this estimation */ GlobalsCache memory gTmp; _globalsCacheSnapshot(g, gTmp); DailyRoundState memory rs; rs._allocSupplyCached = totalSupply() + g._lockedSunsTotal; _dailyRoundCalc(gTmp, rs, day); /* Stake is no longer locked so it must be added to total as if it were */ gTmp._stakeSharesTotal += stakeSharesParam; payout = rs._payoutTotal * stakeSharesParam / gTmp._stakeSharesTotal; return payout; } function _dailyRoundCalc(GlobalsCache memory g, DailyRoundState memory rs, uint256 day) private view { /* Calculate payout round Inflation of 5.42% inflation per 364 days (approx 1 year) dailyInterestRate = exp(log(1 + 5.42%) / 364) - 1 = exp(log(1 + 0.0542) / 364) - 1 = exp(log(1.0542) / 364) - 1 = 0.0.00014523452066 (approx) payout = allocSupply * dailyInterestRate = allocSupply / (1 / dailyInterestRate) = allocSupply / (1 / 0.00014523452066) = allocSupply / 6885.4153644438375 (approx) = allocSupply * 50000 / 68854153 (* 50000/50000 for int precision) */ rs._payoutTotal = (rs._allocSupplyCached * 50000 / 68854153); if (g._stakePenaltyTotal != 0) { rs._payoutTotal += g._stakePenaltyTotal; g._stakePenaltyTotal = 0; } } function _dailyRoundCalcAndStore(GlobalsCache memory g, DailyRoundState memory rs, uint256 day) private { _dailyRoundCalc(g, rs, day); dailyData[day].dayPayoutTotal = uint72(rs._payoutTotal); dailyData[day].dayDividends = xfLobby[day]; dailyData[day].dayStakeSharesTotal = uint72(g._stakeSharesTotal); } function _dailyDataUpdate(GlobalsCache memory g, uint256 beforeDay, bool isAutoUpdate) private { if (g._dailyDataCount >= beforeDay) { /* Already up-to-date */ return; } DailyRoundState memory rs; rs._allocSupplyCached = totalSupply() + g._lockedSunsTotal; uint256 day = g._dailyDataCount; _dailyRoundCalcAndStore(g, rs, day); /* Stakes started during this day are added to the total the next day */ if (g._nextStakeSharesTotal != 0) { g._stakeSharesTotal += g._nextStakeSharesTotal; g._nextStakeSharesTotal = 0; } while (++day < beforeDay) { _dailyRoundCalcAndStore(g, rs, day); } emit DailyDataUpdate( msg.sender, block.timestamp, g._dailyDataCount, day ); g._dailyDataCount = day; } } contract StakeableToken is GlobalsAndUtility { /** * @dev PUBLIC FACING: Open a stake. * @param newStakedSuns Number of Suns to stake * @param newStakedDays Number of days to stake */ function stakeStart(uint256 newStakedSuns, uint256 newStakedDays) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* Enforce the minimum stake time */ require(newStakedDays >= MIN_STAKE_DAYS, "ELCK: newStakedDays lower than minimum"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); _stakeStart(g, newStakedSuns, newStakedDays); /* Remove staked Suns from balance of staker */ _burn(msg.sender, newStakedSuns); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Unlocks a completed stake, distributing the proceeds of any penalty * immediately. The staker must still call stakeEnd() to retrieve their stake return (if any). * @param stakerAddr Address of staker * @param stakeIndex Index of stake within stake list * @param stakeIdParam The stake's id */ function stakeGoodAccounting(address stakerAddr, uint256 stakeIndex, uint40 stakeIdParam) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* require() is more informative than the default assert() */ require(stakeLists[stakerAddr].length != 0, "ELCK: Empty stake list"); require(stakeIndex < stakeLists[stakerAddr].length, "ELCK: stakeIndex invalid"); StakeStore storage stRef = stakeLists[stakerAddr][stakeIndex]; /* Get stake copy */ StakeCache memory st; _stakeLoad(stRef, stakeIdParam, st); /* Stake must have served full term */ require(g._currentDay >= st._lockedDay + st._stakedDays, "ELCK: Stake not fully served"); /* Stake must still be locked */ require(st._unlockedDay == 0, "ELCK: Stake already unlocked"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); /* Unlock the completed stake */ _stakeUnlock(g, st); /* stakeReturn & dividends values are unused here */ (, uint256 payout, uint256 dividends, uint256 penalty, uint256 cappedPenalty) = _stakePerformance( g, st, st._stakedDays ); emit StakeGoodAccounting( stakeIdParam, stakerAddr, msg.sender, st._stakedSuns, st._stakeShares, payout, penalty ); if (cappedPenalty != 0) { g._stakePenaltyTotal += cappedPenalty; } /* st._unlockedDay has changed */ _stakeUpdate(stRef, st); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Closes a stake. The order of the stake list can change so * a stake id is used to reject stale indexes. * @param stakeIndex Index of stake within stake list * @param stakeIdParam The stake's id */ function stakeEnd(uint256 stakeIndex, uint40 stakeIdParam) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); StakeStore[] storage stakeListRef = stakeLists[msg.sender]; /* require() is more informative than the default assert() */ require(stakeListRef.length != 0, "ELCK: Empty stake list"); require(stakeIndex < stakeListRef.length, "ELCK: stakeIndex invalid"); /* Get stake copy */ StakeCache memory st; _stakeLoad(stakeListRef[stakeIndex], stakeIdParam, st); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); uint256 servedDays = 0; bool prevUnlocked = (st._unlockedDay != 0); uint256 stakeReturn; uint256 payout = 0; uint256 dividends = 0; uint256 penalty = 0; uint256 cappedPenalty = 0; if (g._currentDay >= st._lockedDay) { if (prevUnlocked) { /* Previously unlocked in stakeGoodAccounting(), so must have served full term */ servedDays = st._stakedDays; } else { _stakeUnlock(g, st); servedDays = g._currentDay - st._lockedDay; if (servedDays > st._stakedDays) { servedDays = st._stakedDays; } } (stakeReturn, payout, dividends, penalty, cappedPenalty) = _stakePerformance(g, st, servedDays); msg.sender.transfer(dividends); } else { /* Stake hasn't been added to the total yet, so no penalties or rewards apply */ g._nextStakeSharesTotal -= st._stakeShares; stakeReturn = st._stakedSuns; } emit StakeEnd( stakeIdParam, prevUnlocked ? 1 : 0, msg.sender, st._lockedDay, servedDays, st._stakedSuns, st._stakeShares, dividends, payout, penalty, stakeReturn ); if (cappedPenalty != 0 && !prevUnlocked) { /* Split penalty proceeds only if not previously unlocked by stakeGoodAccounting() */ g._stakePenaltyTotal += cappedPenalty; } /* Pay the stake return, if any, to the staker */ if (stakeReturn != 0) { _mint(msg.sender, stakeReturn); /* Update the share rate if necessary */ _shareRateUpdate(g, st, stakeReturn); } g._lockedSunsTotal -= st._stakedSuns; _stakeRemove(stakeListRef, stakeIndex); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Return the current stake count for a staker address * @param stakerAddr Address of staker */ function stakeCount(address stakerAddr) external view returns (uint256) { return stakeLists[stakerAddr].length; } /** * @dev Open a stake. * @param g Cache of stored globals * @param newStakedSuns Number of Suns to stake * @param newStakedDays Number of days to stake */ function _stakeStart( GlobalsCache memory g, uint256 newStakedSuns, uint256 newStakedDays ) internal { /* Enforce the maximum stake time */ require(newStakedDays <= MAX_STAKE_DAYS, "ELCK: newStakedDays higher than maximum"); uint256 bonusSuns = _stakeStartBonusSuns(newStakedSuns, newStakedDays); uint256 newStakeShares = (newStakedSuns + bonusSuns) * SHARE_RATE_SCALE / g._shareRate; /* Ensure newStakedSuns is enough for at least one stake share */ require(newStakeShares != 0, "ELCK: newStakedSuns must be at least minimum shareRate"); /* The stakeStart timestamp will always be part-way through the current day, so it needs to be rounded-up to the next day to ensure all stakes align with the same fixed calendar days. The current day is already rounded-down, so rounded-up is current day + 1. */ uint256 newLockedDay = g._currentDay + 1; /* Create Stake */ uint40 newStakeId = ++g._latestStakeId; _stakeAdd( stakeLists[msg.sender], newStakeId, newStakedSuns, newStakeShares, newLockedDay, newStakedDays ); emit StakeStart( newStakeId, msg.sender, newStakedSuns, newStakeShares, newStakedDays ); /* Stake is added to total in the next round, not the current round */ g._nextStakeSharesTotal += newStakeShares; /* Track total staked Suns for inflation calculations */ g._lockedSunsTotal += newStakedSuns; } /** * @dev Calculates total stake payout including rewards for a multi-day range * @param g Cache of stored globals * @param stakeSharesParam Param from stake to calculate bonuses for * @param beginDay First day to calculate bonuses for * @param endDay Last day (non-inclusive) of range to calculate bonuses for * @return Payout in Suns */ function _calcPayoutRewards( GlobalsCache memory g, uint256 stakeSharesParam, uint256 beginDay, uint256 endDay ) private view returns (uint256 payout) { uint256 counter; for (uint256 day = beginDay; day < endDay; day++) { uint256 dayPayout; dayPayout = dailyData[day].dayPayoutTotal * stakeSharesParam / dailyData[day].dayStakeSharesTotal; if (counter < 4) { counter++; } /* Eligible to receive bonus */ else { dayPayout = (dailyData[day].dayPayoutTotal * stakeSharesParam / dailyData[day].dayStakeSharesTotal) * BONUS_DAY_SCALE; counter = 0; } payout += dayPayout; } return payout; } /** * @dev Calculates user dividends * @param g Cache of stored globals * @param stakeSharesParam Param from stake to calculate bonuses for * @param beginDay First day to calculate bonuses for * @param endDay Last day (non-inclusive) of range to calculate bonuses for * @return Payout in Suns */ function _calcPayoutDividendsReward( GlobalsCache memory g, uint256 stakeSharesParam, uint256 beginDay, uint256 endDay ) private view returns (uint256 payout) { for (uint256 day = beginDay; day < endDay; day++) { uint256 dayPayout; /* user's share of 90% of the day's dividends */ dayPayout += ((dailyData[day].dayDividends * 90) / 100) * stakeSharesParam / dailyData[day].dayStakeSharesTotal; payout += dayPayout; } return payout; } /** * @dev Calculate bonus Suns for a new stake, if any * @param newStakedSuns Number of Suns to stake * @param newStakedDays Number of days to stake */ function _stakeStartBonusSuns(uint256 newStakedSuns, uint256 newStakedDays) private pure returns (uint256 bonusSuns) { /* LONGER PAYS BETTER: If longer than 1 day stake is committed to, each extra day gives bonus shares of approximately 0.0548%, which is approximately 20% extra per year of increased stake length committed to, but capped to a maximum of 200% extra. extraDays = stakedDays - 1 longerBonus% = (extraDays / 364) * 20% = (extraDays / 364) / 5 = extraDays / 1820 = extraDays / LPB extraDays = longerBonus% * 1820 extraDaysMax = longerBonusMax% * 1820 = 200% * 1820 = 3640 = LPB_MAX_DAYS BIGGER PAYS BETTER: Bonus percentage scaled 0% to 10% for the first 7M ELCK of stake. biggerBonus% = (cappedSuns / BPB_MAX_SUNS) * 10% = (cappedSuns / BPB_MAX_SUNS) / 10 = cappedSuns / (BPB_MAX_SUNS * 10) = cappedSuns / BPB COMBINED: combinedBonus% = longerBonus% + biggerBonus% cappedExtraDays cappedSuns = --------------- + ------------ LPB BPB cappedExtraDays * BPB cappedSuns * LPB = --------------------- + ------------------ LPB * BPB LPB * BPB cappedExtraDays * BPB + cappedSuns * LPB = -------------------------------------------- LPB * BPB bonusSuns = suns * combinedBonus% = suns * (cappedExtraDays * BPB + cappedSuns * LPB) / (LPB * BPB) */ uint256 cappedExtraDays = 0; /* Must be more than 1 day for Longer-Pays-Better */ if (newStakedDays > 1) { cappedExtraDays = newStakedDays <= LPB_MAX_DAYS ? newStakedDays - 1 : LPB_MAX_DAYS; } uint256 cappedStakedSuns = newStakedSuns <= BPB_MAX_SUNS ? newStakedSuns : BPB_MAX_SUNS; bonusSuns = cappedExtraDays * BPB + cappedStakedSuns * LPB; bonusSuns = newStakedSuns * bonusSuns / (LPB * BPB); return bonusSuns; } function _stakeUnlock(GlobalsCache memory g, StakeCache memory st) private pure { g._stakeSharesTotal -= st._stakeShares; st._unlockedDay = g._currentDay; } function _stakePerformance(GlobalsCache memory g, StakeCache memory st, uint256 servedDays) private view returns (uint256 stakeReturn, uint256 payout, uint256 dividends, uint256 penalty, uint256 cappedPenalty) { if (servedDays < st._stakedDays) { (payout, penalty) = _calcPayoutAndEarlyPenalty( g, st._lockedDay, st._stakedDays, servedDays, st._stakeShares ); stakeReturn = st._stakedSuns + payout; dividends = _calcPayoutDividendsReward( g, st._stakeShares, st._lockedDay, st._lockedDay + servedDays ); } else { // servedDays must == stakedDays here payout = _calcPayoutRewards( g, st._stakeShares, st._lockedDay, st._lockedDay + servedDays ); dividends = _calcPayoutDividendsReward( g, st._stakeShares, st._lockedDay, st._lockedDay + servedDays ); stakeReturn = st._stakedSuns + payout; penalty = _calcLatePenalty(st._lockedDay, st._stakedDays, st._unlockedDay, stakeReturn); } if (penalty != 0) { if (penalty > stakeReturn) { /* Cannot have a negative stake return */ cappedPenalty = stakeReturn; stakeReturn = 0; } else { /* Remove penalty from the stake return */ cappedPenalty = penalty; stakeReturn -= cappedPenalty; } } return (stakeReturn, payout, dividends, penalty, cappedPenalty); } function _calcPayoutAndEarlyPenalty( GlobalsCache memory g, uint256 lockedDayParam, uint256 stakedDaysParam, uint256 servedDays, uint256 stakeSharesParam ) private view returns (uint256 payout, uint256 penalty) { uint256 servedEndDay = lockedDayParam + servedDays; /* 50% of stakedDays (rounded up) with a minimum applied */ uint256 penaltyDays = (stakedDaysParam + 1) / 2; if (penaltyDays < EARLY_PENALTY_MIN_DAYS) { penaltyDays = EARLY_PENALTY_MIN_DAYS; } if (servedDays == 0) { /* Fill penalty days with the estimated average payout */ uint256 expected = _estimatePayoutRewardsDay(g, stakeSharesParam, lockedDayParam); penalty = expected * penaltyDays; return (payout, penalty); // Actual payout was 0 } if (penaltyDays < servedDays) { /* Simplified explanation of intervals where end-day is non-inclusive: penalty: [lockedDay ... penaltyEndDay) delta: [penaltyEndDay ... servedEndDay) payout: [lockedDay ....................... servedEndDay) */ uint256 penaltyEndDay = lockedDayParam + penaltyDays; penalty = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, penaltyEndDay); uint256 delta = _calcPayoutRewards(g, stakeSharesParam, penaltyEndDay, servedEndDay); payout = penalty + delta; return (payout, penalty); } /* penaltyDays >= servedDays */ payout = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, servedEndDay); if (penaltyDays == servedDays) { penalty = payout; } else { /* (penaltyDays > servedDays) means not enough days served, so fill the penalty days with the average payout from only the days that were served. */ penalty = payout * penaltyDays / servedDays; } return (payout, penalty); } function _calcLatePenalty( uint256 lockedDayParam, uint256 stakedDaysParam, uint256 unlockedDayParam, uint256 rawStakeReturn ) private pure returns (uint256) { /* Allow grace time before penalties accrue */ uint256 maxUnlockedDay = lockedDayParam + stakedDaysParam + LATE_PENALTY_GRACE_DAYS; if (unlockedDayParam <= maxUnlockedDay) { return 0; } /* Calculate penalty as a percentage of stake return based on time */ return rawStakeReturn * (unlockedDayParam - maxUnlockedDay) / LATE_PENALTY_SCALE_DAYS; } function _shareRateUpdate(GlobalsCache memory g, StakeCache memory st, uint256 stakeReturn) private { if (stakeReturn > st._stakedSuns) { /* Calculate the new shareRate that would yield the same number of shares if the user re-staked this stakeReturn, factoring in any bonuses they would receive in stakeStart(). */ uint256 bonusSuns = _stakeStartBonusSuns(stakeReturn, st._stakedDays); uint256 newShareRate = (stakeReturn + bonusSuns) * SHARE_RATE_SCALE / st._stakeShares; if (newShareRate > SHARE_RATE_MAX) { /* Realistically this can't happen, but there are contrived theoretical scenarios that can lead to extreme values of newShareRate, so it is capped to prevent them anyway. */ newShareRate = SHARE_RATE_MAX; } if (newShareRate > g._shareRate) { g._shareRate = newShareRate; emit ShareRateChange( st._stakeId, block.timestamp, newShareRate ); } } } } contract TransformableToken is StakeableToken { /** * @dev PUBLIC FACING: Enter the auction lobby for the current round * @param referrerAddr ETH address of referring user (optional; 0x0 for no referrer) */ function xfLobbyEnter(address referrerAddr) external payable { uint256 enterDay = _currentDay(); uint256 rawAmount = msg.value; require(rawAmount != 0, "ELCK: Amount required"); XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender]; uint256 entryIndex = qRef.tailIndex++; qRef.entries[entryIndex] = XfLobbyEntryStore(uint96(rawAmount), referrerAddr); xfLobby[enterDay] += rawAmount; emit XfLobbyEnter( block.timestamp, enterDay, entryIndex, rawAmount ); } /** * @dev PUBLIC FACING: Leave the transform lobby after the round is complete * @param enterDay Day number when the member entered * @param count Number of queued-enters to exit (optional; 0 for all) */ function xfLobbyExit(uint256 enterDay, uint256 count) external { require(enterDay < _currentDay(), "ELCK: Round is not complete"); XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender]; uint256 headIndex = qRef.headIndex; uint256 endIndex; if (count != 0) { require(count <= qRef.tailIndex - headIndex, "ELCK: count invalid"); endIndex = headIndex + count; } else { endIndex = qRef.tailIndex; require(headIndex < endIndex, "ELCK: count invalid"); } uint256 waasLobby = _waasLobby(enterDay); uint256 _xfLobby = xfLobby[enterDay]; uint256 totalXfAmount = 0; do { uint256 rawAmount = qRef.entries[headIndex].rawAmount; address referrerAddr = qRef.entries[headIndex].referrerAddr; delete qRef.entries[headIndex]; uint256 xfAmount = waasLobby * rawAmount / _xfLobby; if (referrerAddr == address(0) || referrerAddr == msg.sender) { /* No referrer or Self-referred */ _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); } else { /* Referral bonus of 5% of xfAmount to member */ uint256 referralBonusSuns = xfAmount / 20; xfAmount += referralBonusSuns; /* Then a cumulative referrer bonus of 10% to referrer */ uint256 referrerBonusSuns = xfAmount / 10; _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); _mint(referrerAddr, referrerBonusSuns); } totalXfAmount += xfAmount; } while (++headIndex < endIndex); qRef.headIndex = uint40(headIndex); if (totalXfAmount != 0) { _mint(msg.sender, totalXfAmount); } } /** * @dev PUBLIC FACING: External helper to return multiple values of xfLobby[] with * a single call * @param beginDay First day of data range * @param endDay Last day (non-inclusive) of data range * @return Fixed array of values */ function xfLobbyRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory list) { require( beginDay < endDay && endDay <= _currentDay(), "ELCK: invalid range" ); list = new uint256[](endDay - beginDay); uint256 src = beginDay; uint256 dst = 0; do { list[dst++] = uint256(xfLobby[src++]); } while (src < endDay); return list; } /** * @dev PUBLIC FACING: Release 10% dev share from daily dividends - destined for the token on the tron ​​network */ function xfFlush() external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); require(address(this).balance != 0, "ELCK: No value"); require(LAST_FLUSHED_DAY < _currentDay(), "ELCK: Invalid day"); _dailyDataUpdateAuto(g); ELCK_SHARE_ADDR.transfer((dailyData[LAST_FLUSHED_DAY].dayDividends * 10) / 100); LAST_FLUSHED_DAY++; _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Return a current lobby member queue entry. * Only needed due to limitations of the standard ABI encoder. * @param memberAddr ETH address of the lobby member * @param enterDay Day number when the member entered * @param entryIndex Entry when the member entered * @return 1: Raw amount that was entered with; 2: Referring ETH addr (optional; 0x0 for no referrer) */ function xfLobbyEntry(address memberAddr, uint256 enterDay, uint256 entryIndex) external view returns (uint256 rawAmount, address referrerAddr) { XfLobbyEntryStore storage entry = xfLobbyMembers[enterDay][memberAddr].entries[entryIndex]; require(entry.rawAmount != 0, "ELCK: Param invalid"); return (entry.rawAmount, entry.referrerAddr); } /** * @dev PUBLIC FACING: Return the lobby days that a user is in with a single call * @param memberAddr ETH address of the user * @return Bit vector of lobby day numbers */ function xfLobbyPendingDays(address memberAddr) external view returns (uint256[XF_LOBBY_DAY_WORDS] memory words) { uint256 day = _currentDay() + 1; while (day-- != 0) { if (xfLobbyMembers[day][memberAddr].tailIndex > xfLobbyMembers[day][memberAddr].headIndex) { words[day >> 8] |= 1 << (day & 255); } } return words; } function _waasLobby(uint256 enterDay) private returns (uint256 waasLobby) { /* 1342465753424 = ~ 4900000 * SUNS_PER_ELCK / 365 */ if (enterDay > 0 && enterDay <= 365) { waasLobby = CLAIM_STARTING_AMOUNT - ((enterDay - 1) * 1342465753424); } else { waasLobby = CLAIM_LOWEST_AMOUNT; } return waasLobby; } function _emitXfLobbyExit( uint256 enterDay, uint256 entryIndex, uint256 xfAmount, address referrerAddr ) private { emit XfLobbyExit( block.timestamp, enterDay, entryIndex, xfAmount, referrerAddr ); } } contract ELCK is TransformableToken { constructor() public { /* Initialize global shareRate to 1 */ globals.shareRate = uint40(1 * SHARE_RATE_SCALE); } function() external payable {} }